A novel, alternative and deeper view to the “selfish gene” paradigm is presented, describable as the “selfish code” frame. Introducing it, we put forth a quantum mechanical algorithm as a new description of the intracellular protein synthetizing machinery. The successive steps of the algorithm are, tentatively, semiotic constraints of the well-known quantum mechanical molecular “internal measurement” type. It is proposed that this molecular algorithm mediates a quantum mechanical time reversed dynamics with a primordial special version of this latter molecular measurement type (“mixed measurement”) as its origin. It is furthermore suggested that this intracellular regressive algorithmical dynamics is a component of biological “motion”, the other, strongly coupled component being the macroscopic phenotypic motion. The biological “invariant of motion” of this hierarchically coupled overall generalized dynamics is suggested to be the evolutionally converged invariant genetic code vocabulary. It forms, possibly, the underlying internal “driving force” of evolution, as being “struggle for life”.
References
[1]
Dawkins, R. The Selfish Gene, 1st ed. ed.; Freeman & Co.: Oxford, UK, 1976.
[2]
Darwin, C.R. The Origin of Species, 1st ed. ed.; John Murray: London, UK, 1859.
[3]
Wigner, E.P. Group Theory and its Application to the Quantum Mechanics of Atomic Spectra; Academic Press: New York, NY, USA and London, UK, 1959.
[4]
Patel, A.D. Towards Understanding the Origin of Genetic Languages. In Quantum Aspects of Life; Abbot, D., Davies, P., Pati, A., Eds.; Imperial College Press: London, UK, 2008. Chapter 10; pp. 18–19.
[5]
Post, E.L. Recursive unsolvability of a problem of Thue. J. Symb. Logic 1947, 12, 1–11, doi:10.2307/2267170.
[6]
Pattee, H.H. Laws and Constraints, Symbols and Languages. In Towards a Theoretical Biology, 1st ed.; Waddington, C.H., Ed.; Aldine Publishing Company: Chicago, IL, USA, 1972; Volume 4, pp. 248–258.
Pattee, H.H. The Physics of Symbols and the Evolution of Semiotic Controls. In Paper presented at the Workshop on Control Mechanisms for Control Systems: Issues of Measurement and Semiotic Analysis, Las Cruces, NM, USA, 8-12 December 1996; Addison-Wesley: Redwood City, CA, USA, 1997.
[9]
McFadden, J. Quantum Evolution; Harper and Collins: London, UK, 2000.
[10]
Donald, M.J. A review of Johnjoe McFadden’s book “Quantum Evolution”. 2001. arXiv: quant-ph/0101019.
[11]
Matsuno, K. Protobiology: Physical Basis of Biology; CRC Press: Boca Raton, FL, USA, 1989.
[12]
Pattee, H.H. The Vital Statistics of Quantum Dynamics. In Irreversible Thermodynamics and the Origin of Life, 1st ed.; Oster, G.F., Silver, I.L., Tobias, C.A., Eds.; Gordon and Breach Science Publishers: New York, NY, USA, 1974; pp. 33–43.
[13]
Bohr, N. Atomic Theory and the Description of Nature; Cambridge University Press: London, UK, 1934.
[14]
Conrad, M. Physics and biology: Towards a unified model. Appl. Math. Comp. 1989, 32, 75–102, doi:10.1016/0096-3003(89)90089-1.
[15]
Conrad, M. The fluctuon model of force, life and computation: a constructive analysis. Appl. Math. Comp. 1993, 56, 208–259.
[16]
Balázs, A. The ontological roots of human science: The message of evolution—the physics of freedom (choice). World Fut. 2007, 63, 568–583.
[17]
Pattee, H.H. Can Life Explain Quantum Mechanics? In Quantum Theory and Beyond; Bastin, T., Ed.; Cambridge University Press: Cambridge, UK, 1971; pp. 307–319.
[18]
Belinfante, F. Measurement and Time Reversal in Objective Quantum Theory, 1st ed. ed.; Pergamon Press Ltd.: Oxford, UK, 1975.
[19]
Neumann, J. Mathematical Foundations of Quantum Mechanics; Princeton University Press: Princeton, NJ, USA, 1955.
[20]
Searls, D.B. Formal Grammars for Intermolecular Structure. In Proceedings of the First International IEEE Symposium on Intelligence in Neural and Biological Systems, Herndon, VA, USA, May 1995; IEEE Computer Society Press: Los Alamos, NM, USA; pp. 30–37.
[21]
Searls, D.B. Linguistic approaches to biological sequencies. Comput. Appl. Biosci. 1997, 13, 333–344.
[22]
Patel, A.D. Quantum algorithms and the genetic code. Pramana 2001, 56, 367–381, doi:10.1007/s12043-001-0131-8.
[23]
Zurek, W.H. Relative states and the environment: Einselection, envariance, quantum Darwinism and the existential interpretation. 2008. arXiv: 0707.2832v1.
[24]
Pattee, H.H. How does a molecule become a message? Develop. Biol. Suppl. 1970, 3, 1–16.
[25]
Armus, H.L.; Amber, M.; Jellison, J. Discrimination learning in Paramecia (P. Caudatum). Psychol. Rec. 2006, 56, 489–498.
[26]
Balázs, A. On some evolutionary aspects of the mind-matter problem. Mind & Matter 2013. under review.
[27]
Asano, M.; Basieva, I.; Khrennikov, A.; Ohya, M.; Tanaka, Y.; Yamato, I. Quantum-like model for the adaptive dynamics of the genetic regulation of E. coli’s metabolism of glucose/lactose. Syst. Synth. Biol. 2012, 6, 1–7.
[28]
Asano, M.; Basieva, I.; Khrennikov, A.; Ohya, M.; Tanaka, Y.; Yamato, I. Towards modeling of epigenetic evolution with the aid of theory of open quantum systems. AIP Conf. Proc. 2012, 1508, 75–78.
Wigner, E.P. Remarks on the Mind-Body Question. In The Scientist Speculates; Good, I.J., Ed.; Heinemann: London, UK, 1961; pp. 284–302.
[31]
Balázs, A. On the physics of the symbol-matter problem in biological systems and the origin of life: Affine Hilbert spaces model of the robustness of the internal quantum dynamics of biological systems. BioSystems 2003, 70, 43–54, doi:10.1016/S0303-2647(03)00027-3.
[32]
Prigogine, I. Symmetry Breaking Chemical Instabilities. In Irreversible Thermodynamics and the Origin of Life, 1st ed.; Oster, G.F., Silver, I.L., Tobias, C.A., Eds.; Gordon and Breach Science Publishers: New York, NY, USA, 1974; pp. 11–24.
[33]
Nicolis, G.; Prigogine, I. Self-Organization in Non-Equilibrium Systems; Wiley: New York, NY, USA, 1977.
[34]
Kauffman, S.A. The Origins of Order, 1st ed. ed.; Oxford University Press: Oxford, UK, 1993. Part II.
[35]
Primas, H. Chemistry, Quantum Mechanics and Reductionism, 1st ed. ed.; Springer: Berlin, Germany and New York, NY, USA, 1981.
[36]
Joyce, G.F.; Orgel, L.E. Progress toward Understanding the Origin of the RNA World. In The RNA World, 3rd ed.; Gesteland, R.F., Cech, T., Atkins, J.F., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2006; pp. 23–56.
[37]
Eigen, M.; Chuster, P. The Hypercycle: A Principle of Natural Self-Organization; Springer: Berlin, Germany and New York, NY, USA, 1979.
[38]
Dyson, F. Origins of Life, 1st ed. ed.; Cambridge University Press: Cambridge, UK, 1999.
[39]
Woese, C.R. The Genetic Code, 1st ed. ed.; Harper & Row: New York, NY, USA, 1967.
[40]
Crick, F.H.C. The origin of the genetic code. J. Mol. Biol. 1968, 38, 367–379, doi:10.1016/0022-2836(68)90392-6.
[41]
Pattee, H.H. Physical Basis and Origin of Hierarchical Control. In Hierarchy Theory; Pattee, H.H., Ed.; Braziller: New York, NY, USA, 1973. Chapter 4.
[42]
Elitzur, A.C.; Cohen, E. The Retrocausal Nature of Quantum Measurement Revealed by Partial and Weak Measurement. In Quantum Retrocausation: Theory and Experiment; Sheehan, D.P., Ed.; Melwille: New York, NY, USA, 2011; pp. 120–131.
[43]
Gunji, Y.-P. Global logic resulting from disequilibration process. BioSystems 1995, 35, 33–62.
[44]
Pattee, H.H. The complementarity principle and the origin of macromolecular information. BioSystems 1979, 11, 217–226, doi:10.1016/0303-2647(79)90013-3.
[45]
Man’ko, O.V.; Man’ko, V.I. Classical mechanics is not the h→0 limit of quantum mechanics. 2004. arXiv: quant-ph/0407183.
[46]
Elze, H.-T.; Gambarotta, G.; Vallone, F. Path integral for classical dynamics, entanglement, and Jaynes-Cummings model at the quantum-classical divide. Int. J. Quantum Inf. 2011, 9, 203–224, doi:10.1142/S021974991100723X.
[47]
Al-Qasimi, A.; James, D.F.V. A comparison of the attempts of quantum discord and quantum entanglement to capture quantum correlations. 2010. arXiv: 1007.1814v1.
[48]
Bohr, N. Essays 1958–1962 on Atomic Physics and Human Knowledge; Wiley: New York, NY, USA, 1963.
[49]
Peirce, C.S. Division of Signs. In Collected Papers II.; Harvard University Press: Cambridge, MA, USA, 1932; pp. 134–173.
[50]
Gernert, D. Incomplete knowledge and the chances of a constructive mastering. World Fut. 2004, 60, 547–565.
[51]
Sharov, A.A. From cybernetics to semiotics in biology. Semiotica 1998, 120, 403–419.
[52]
Witzany, G. From the “Logic of the Molecular Syntax” to Molecular Pragmatism. In Evolution and Cognition; Vienna University Press: Vienna, Austria, 1995; Volume 1. (No 2), pp. 148–168.
[53]
Chomsky, N. Syntactic Structures, 1st ed. ed.; Mouton, The Hague: Berlin, Germany, 1957.
[54]
Chomsky, N. Aspects of the Theory of Syntax, 1st ed. ed.; MIT Press: Cambridge, MA, USA, 1965.
[55]
Rosen, R. Life Itself; Columbia University Press: New York, NY, USA, 1991.
[56]
Yockey, H.P. Information Theory, Evolution, and the Origin of Life; Cambridge University Press: Cambridge, UK and New York, NY, USA, 2005.
[57]
Maynard Smith, J.; Szathmáry, E. The Major Transitions in Evolution; Oxford University Press: Oxford, UK, 1995.
[58]
Wetzel, R. Evolution of the aminoacyl-tRNA synthetases and the origin of the genetic code. J. Mol. Evol. 1995, 40, 545–550, doi:10.1007/BF00166624.
[59]
Zeleny, M. Autopoiesis: A Theory of Living Organization; North-Holland: New York, NY, USA, 1981.
[60]
Popa, R. Between Necessity and Probability: Searching for the Definition and Origin of Life, 1st ed. ed.; Springer: Berlin-Heidelberg, Germany, 2004. Chapter 2.
[61]
Bashford, J.D.; Tsohantjis, I.; Jarvis, P.D. Codon and nucleotide assignments in a supersymmetric model of the genetic code. Phys. Lett. A. 1997, 233, 481–488, doi:10.1016/S0375-9601(97)00475-1.
[62]
Bashford, J.D.; Tsohantjis, I.; Jarvis, P.D. A supersymmetric model for the evolution of the genetic code. Proc. Nat. Acad. Sci. USA 1998, 95, 987–992, doi:10.1073/pnas.95.3.987.
[63]
Driesch, H. The Science and Philosophy of the Organism, 2nd ed. ed.; A & C Black, Ltd.: London, UK, 1929. Section B, Parts I–III.
[64]
Pattee, H.H. Cell psychology: An evolutional approach to the symbol-matter problem. Cogn. Brain Theory 1982, 5, 325–341.