Serpentinites are used in both exterior and interior locations, but not all serpentinites are equal: they vary in physical-mechanical behavior and are not all suitable for similar uses. The serpentinites most commonly used worldwide come from India, Pakistan or Egypt. Spain has traditionally quarried two ultramafic massifs, one in Galicia (Verde Pirineos) and one in Andalucía (Verde Macael). Some of these quarries were small family-run businesses. In both cases, these rocks are commercially available as “green marble.” These serpentinites commonly have a high degree of carbonation, but the process does not always take place with the same intensity. Carbonate can act as a cementing agent of the other phases, increasing the mechanical strength parameters. As a result, an improvement in the strength conditions is achieved, but a misinterpretation of the suitability of the rock may occur because a perception among users that “green marble” is similar to geologically defined marble. This may lead to inappropriate applications as an ornamental stone. At a time of economic crisis in Europe, the natural stone sector is encouraged to invest in research to identify the best quality products that can compete profitably with those currently being imported from other countries. This paper provides a comparison of properties of the Verde Macael serpentinite with a true marble in the hope of contributing to improving the natural stone industrial sector.
References
[1]
Pereira, M.D.; Yenes, M.; Blanco, J.A.; Peinado, M. Characterization of serpentinites to define their appropriate use as dimension stone. In Building Stone Decay: From Diagnosis to Conservation; Prikryl, R., Smith, B.J., Eds.; Geological Society: London, UK, 2007; Volume Geological Society Special Publication No. 271, pp. 55–62.
[2]
Ismael, I.; Hassan, M. Characterization of some Egyptian serpentinites used as ornamental stones. Chin. J. Geochem. 2008, 27, 140–149.
[3]
Pereira, D.; Peinado, M.; Blanco, J.A. Misuse of natural stone for construction and the consequences in buildings. Case of study of serpentinites. J. Mater. Civ. Eng. 2012, doi:10.1061/(ASCE)MT.1943-5533.0000689.
[4]
Pereira, M.D.; Peinado, M.; Blanco, J.A.; Yenes, M.; Fallick, A.; Upton, B. Serpentinite: A potential natural stone in Spain. In Dimension Stone; Prikryl, R., Ed.; Taylor and Francis: London, UK, 2004; pp. 85–87.
[5]
Meierding, T.C. Weathering of serpentine stone buildings in the Philadelphia region: A geograffic approach related to acidic deposition. In Stone Decay in the Architectural Environment; Turkington, A.V., Ed.; Geological Society of America: Boulder, CO, USA, 2005; Volume Special Paper No. 399, pp. 17–25.
[6]
Harrell, J.A. Survey of Ornamental Stones in Mosques and Other Islamic Buildings of the Pre-Ottoman Period in Cairo, Egypt. Available online: http://www.eeescience.utoledo.edu/Faculty/Harrell/Egypt/Mosques/Survey_Intro.htm (accessed on 4 November 2011).
[7]
Malesani, P.; Pecchioni, E.; Cantisani, E.; Fratini, F. Geolithology and provenance of materials of some historical buildings and monuments in the centre of Florence (Italy). Episodes 2003, 26, 250–255.
[8]
Marino, L.; Corti, M.; Coli, M.; Tanini, C.; Nenci, C. The “Verde di Prato” Stones of Cathedral and Baptistery of Florence (abstract). In Proceedings of 32nd International Geological Congress, Florence, Italy, 20–28 August, 2004; p. 283.
[9]
Sharp, J. Cosmati pavements at Westminster abbey. Nexus Netw. J. 1999, 1, 99–104, doi:10.1007/s00004-998-0008-y.
[10]
Egeler, C.G. On the tectonics of the eastern Betic Cordilleras (SE Spain). Geol. Rundsch. 1963, 52, 260–269.
[11]
Puga, E.; Diaz de Federico, A.; Nieto, J.M. Tectonostratigraphic subdivision and petrological characterisation of the deepest complexes of the Betic zone: A review. Geodin. Acta 2002, 15, 23–43.
[12]
Cordillera Betica y Baleares[in Spanish]. In Geologia de Espana; Vera, J.A., Ed.; SGE-IGME: Madrid, Spain, 2004; pp. 345–464.
[13]
Schultz, L.G. Quantitative Interpretation of Mineralogical Composition from X-ray and Chemical Data for Pierre Shale; U.S. Government Printing Office: Washington, DC, USA, 1964; U.S. Geological Survey Professional Paper 391-c, pp. 1–31.
[14]
UNE-EN-ISO-17025: Evaluación de la Conformidad. Requisitos Generales Para la Competencia de los Laboratorios de Ensayo y de Calibración. [in Spanish]; Spanish Association for Standarization and Certification (AENOR): Madrid, Spain, 2005.
[15]
UNE-EN-1936: Métodos de Ensayo Para Piedra Natural. Determinación de la Densidad Real y Aparente y de la Porosidad Abierta y Total. [in Spanish]; Spanish Association for Standarization and Certification (AENOR): Madrid, Spain, 2007.
[16]
UNE-EN-13755: Métodos de Ensayo Para Piedra Natural. Determinación de la Absorción de Agua a Presión Atmosférica. [in Spanish]; Spanish Association for Standarization and Certification (AENOR): Madrid, Spain, 2008.
[17]
UNE-EN-1926: Métodos de Ensayo Para la Piedra Natural. Determinación de la Resistencia a la Compresión Uniaxial. [in Spanish]; Spanish Association for Standarization and Certification (AENOR): Madrid, Spain, 2007.
[18]
UNE-EN-1457: Métodos de Ensayo Para Piedra Natural. Determinación de la Velocidad de Propagación del Sonido. [in Spanish]; Spanish Association for Standarization and Certification (AENOR): Madrid, Spain, 2005.
[19]
Guyader, J.; Denis, A. Propagation des ondes les roches anisotropes sous contrainte evaluation de la qualite des schiste ardoisiers[in French]. Bull. Eng. Geol. 1986, 33, 49–55, doi:10.1007/BF02594705.
Lasa, I. Marmoles[in Spanish]. In Roc-Maquina. La Piedra Natural de Espa?a. Directorio, 21st ed.; Reed Business Information: Bilbao, Spain, 2010; pp. 344–409.
[22]
Lopez-Arce, P.; Doehne, E.; Martin, W.; Pinchin, S. Magnesium sulfate salts and historic building materials: Experimental simulation of limestone flaking by relative humidity cycling and crystallization of salts. Mater. Constr. 2008, 58, 125–142.
[23]
Vilhelm, J.; Rudajev, V.; Zivor, R.; Lokajicek, T.; Pros, Z. Comparison of field and laboratory seismic velocity anisotropy measurement (scaling factor). Acta Geodyn. Geomater. 2008, 5, 161–169.
Bezacier, L.; Reynard, B.; Bass, J.D.; Sanchez-Valle, C.; van de Moortele, B. Elasticity of antigorite, seismic detection of serpentinites, and anisotropy in subduction zones. Earth Planet. Sci. Lett. 2010, 289, 198–208.
[26]
Luque, A.; Ruiz-Agudo, E.; Cultrone, G.; Sebastian-Pardo, E.; Siegesmund, S. Direct observation of microcrack development in marble caused by thermal weathering. Environ. Earth Sci. 2011, 62, 1375–1386, doi:10.1007/s12665-010-0624-1.