全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Geosciences  2013 

Preservation and Recycling of Crust during Accretionary and Collisional Phases of Proterozoic Orogens: A Bumpy Road from Nuna to Rodinia

DOI: 10.3390/geosciences3020240

Keywords: supercontinents, juvenile crust, collsional orogens, recycling

Full-Text   Cite this paper   Add to My Lib

Abstract:

Zircon age peaks at 2100–1650 and 1200–1000 Ma correlate with craton collisions in the growth of supercontinents Nuna and Rodinia, respectively, with a time interval between collisions mostly <50 Myr (range 0–250 Myr). Collisional orogens are two types: those with subduction durations <500 Myr and those ≥500 Myr. The latter group comprises orogens with long-lived accretionary stages between Nuna and Rodinia assemblies. Neither orogen age nor duration of either subduction or collision correlates with the volume of orogen preserved. Most rocks preserved date to the pre-collisional, subduction (ocean-basin closing) stage and not to the collisional stage. The most widely preserved tectonic setting in Proterozoic orogens is the continental arc (10%–90%, mean 60%), with oceanic tectonic settings (oceanic crust, arcs, islands and plateaus, serpentinites, pelagic sediments) comprising <20% and mostly <10%. Reworked components comprise 20%–80% (mean 32%) and microcratons comprise a minor but poorly known fraction. Nd and Hf isotopic data indicate that Proterozoic orogens contain from 10% to 60% of juvenile crust (mean 36%) and 40%–75% reworked crust (mean 64%). Neither the fraction nor the rate of preservation of juvenile crust is related to the collision age nor to the duration of subduction. Regardless of the duration of subduction, the amount of juvenile crust preserved reaches a maximum of about 60%, and 37% of the volume of juvenile continental crust preserved between 2000 and 1000 Ma was produced in the Great Proterozoic Accretionary Orogen (GPAO). Pronounced minima occur in frequency of zircon ages of rocks preserved in the GPAO; with minima at 1600–1500 Ma in Laurentia; 1700–1600 Ma in Amazonia; and 1750–1700 Ma in Baltica. If these minima are due to subduction erosion and delamination as in the Andes in the last 250 Myr; approximately one third of the volume of the Laurentian part of the GPAO could have been recycled into the mantle between 1500 and 1250 Ma. This may have enriched the mantle wedge in incompatible elements and water leading to the production of felsic magmas responsible for the widespread granite-rhyolite province of this age. A rapid decrease in global Nd and in detrital zircon Hf model ages between about 1600 and 1250 Ma could reflect an increase in recycling rate of juvenile crust into the mantle; possibly in response to partial fragmentation of Nuna.

References

[1]  Rino, S.; Komiya, T.; Windley, B.F.; Katayama, I.; Motoki, A.; Hirata, T. Major episodic increase of continental crustal growth determined from zircon ages of river sands; implications for mantle overturns in the early Precambrian. Phys. Earth Planet. Inter. 2004, 146, 369–394, doi:10.1016/j.pepi.2003.09.024.
[2]  Iizuka, T.; Hirata, T.; Komiya, T.; Rino, S.; Katayama, I.; Motoki, I.; Maruyama, S. U-Pb and Lu-Hf isotope systematics of zircons form the Mississippi River sand: Implications for reworking and growth of continental crust. Geology 2005, 33, 485–488, doi:10.1130/G21427.1.
[3]  Condie, K.C.; Belousova, E.; Griffin, W.L.; Sircombe, K.N. Granitoid events in space and time: Constraints from igneous and detrital zircon age spectra. Gondwana Res. 2009, 15, 228–242, doi:10.1016/j.gr.2008.06.001.
[4]  Condie, K.C.; Aster, R.C. Episodic zircon age spectra of orogenic granitoids: The supercontinent connection and continental growth. Precambr. Res. 2010, 180, 227–236, doi:10.1016/j.precamres.2010.03.008.
[5]  Belousova, E.; Kostitsyn, Y.A.; Griffin, W.L.; Begg, G.C.; O’Reilly, S.Y.; Pearson, N.J. The growth of the continental crust: Constraints from zircon Hf-isotope data. Lithos 2010, 119, 457–468, doi:10.1016/j.lithos.2010.07.024.
[6]  Hawkesworth, C.J.; Bhuime, B.; Pietranik, A.B.; Cawood, P.A.; Kemp, A.I.S.; Storey, C.D. The generation and evolution of the continental crust. J. Geol. Soc. 2010, 167, 229–248, doi:10.1144/0016-76492009-072.
[7]  Taylor, S.R.; McLennan, S.M. The geochemical evolution of the continental crust. Rev. Geophys. 1995, 33, 241–265, doi:10.1029/95RG00262.
[8]  Condie, K.C. Episodic continental growth and supercontinents: A mantle avalanche connection? Earth Planet. Sci. Lett. 1998, 163, 97–108, doi:10.1016/S0012-821X(98)00178-2.
[9]  Wang, C.Y.; Campbell, I.H.; Allen, C.M.; Williams, I.S.; Eggins, S.M. Rate of growth of the preserved North American continental crust: Evidence from Hf and O isotopes in Mississippi detrital zircons. Geochim. Cosmochim. Acta 2009, 73, 712–728, doi:10.1016/j.gca.2008.10.037.
[10]  Condie, K.C. Growth and accretion of continental crust: Inferences based on Laurentia. Chem. Geol. 1990, 83, 183–194.
[11]  Hawkesworth, C.J.; Cawood, P.; Kemp, T.; Storey, C.; Dhuime, B. A matter of preservation. Science 2009, 323, 49–50, doi:10.1126/science.1168549.
[12]  Cawood, P.A.; Kroner, A.; Collins, W.J.; Kusky, T.M.; Mooney, W.D.; Windley, B.F. Accretionary orogens through earth history. Geological Society London Special Publications 2009, 318, 1–36, doi:10.1144/SP318.1.
[13]  Condie, K.C.; Bickford, M.E.; Aster, R.C.; Belousova, E.; Scholl, D.W. Episodic zircon ages, Hf isotopic composition, and the preservation rate of continental crust. Geol. Soc. Am. Bull. 2011, 123, 951–957, doi:10.1130/B30344.1.
[14]  Niu, Y.; O’Hara, M.J. MORB mantle hosts the missing Eu (Sr, Nb, Ta and Ti) in the continental crust: New perspectives on crustal growth, crust-mantle differentiation and chemical structure of oceanic upper mantle. Lithos 2009, 112, 1–17.
[15]  Roberts, N.M.W. Increased loss of continental crust during supercontinent amalgamation. Gondwana Res. 2012, 21, 994–1000, doi:10.1016/j.gr.2011.08.001.
[16]  Zhao, G.; Sun, M.; Wilde, S.A.; Li, S. Paleo-Mesoproterozoic supercontinent: Assembly, growth and breakup. Earth Sci. Rev. 2004, 67, 91–123.
[17]  Evans, D.A.D.; Mitchell, R.N. Assembly and breakup of the core of Paleo-Mesoproterozoic supercontinent Nuna. Geology 2011, 39, 443–446, doi:10.1130/G31654.1.
[18]  Condie, K.C. Accretionary orogens in space and time. Geol. Soc. Am. Mem. 2007, 200, 145–158, doi:10.1130/2007.1200(09).
[19]  Condie, K.C. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chem. Geol. 1993, 104, 1–37, doi:10.1016/0009-2541(93)90140-E.
[20]  Condie, K.C.; Chomiak, B. Continental accretion: Contrasting Mesozoic and Early Proterozoic tectonic regimes. Tectonophysics 1996, 265, 101–126, doi:10.1016/S0040-1951(96)00148-5.
[21]  Condie, K.C.; Kroner, A. The building blocks of continental crust: Evidence for a major change in the tectonic setting of continental growth at the end of the Archean. Gondwana Res. 2012, 394–402.
[22]  Condie, K.C. Greenstones through Time. In Archean Crustal Evolution; Condie, K.C., Ed.; Elsevier: Amsterdam, The Netherlands, 1994; pp. 85–120.
[23]  Condie, K.C. Incompatible element ratios in oceanic basalts and komatiites: Tracking deep mantle sources and continental growth rates with time. Geochem. Geophys. Geosyst. 2003, 4, 1–28, doi:10.1029/2002GC000333.
[24]  Dhuime, B.; Hawkesworth, C.J.; Cawood, P.A.; Storey, C.D. A change in the geodynamics of continental growth 3 billion years ago. Science 2012, 335, 1334–1336, doi:10.1126/science.1216066.
[25]  Dickin, A.P.; McNutt, R.H.; Martin, C.; Guo, A. The extent of juvenile crust in the Grenville province: Nd isotope evidence. Geol. Soc. Am. Bull. 2010, 122, 870–883, doi:10.1130/B26381.1.
[26]  McLelland, J.M.; Selleck, B.W.; Bickford, M.E. Review of the Proterozoic evolution of the Grenville province, its Adirondack outlier, and the Mesoproterozoic inliers of the Appalachians. Geol. Soc. Am. Mem. 2010, 206, 21–49, doi:10.1130/2010.1206(02).
[27]  Hynes, A.; Rivers, T. Protracted continental collision-evidence from the Grenville orogen. Can. J. Earth Sci. 2010, 47, 591–620, doi:10.1139/E10-003.
[28]  Kay, S.M.; Godoy, E.; Kurtz, A. Episodic arc maigration, crustal thickening, subduction erosion, and magmatism in the south-central Andes. Geol. Soc. Am. Bull. 2005, 117, 67–88, doi:10.1130/B25431.1.
[29]  Scholl, D.W.; von Huene, R. Crustal recycling at modern subduction zones applied to the past-ssues of growth and preservation of continental basement, mantle geochemistry, and supercontinent reconstruction. Geol. Soc. Am. Mem. 2007, 200, 9–32, doi:10.1130/2007.1200(02).
[30]  Scholl, D.W.; von Huene, R. Implications of estimated magmatic additions and recycling losses at the subduction zones of accretionary and collisional orogens. Geological Society London Special Publications 2009, 318, 105–125, doi:10.1144/SP318.4.
[31]  Clift, P.; Schouten, H.; Vannucchi, P. Arc-continent collisions, sediment recycling and the maintenance of the continental crust. Geological Society London Special Publications 2009, 318, 75–103, doi:10.1144/SP318.3.
[32]  Stern, C.R. Subduction erosion: Rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust and mantle. Gondwana Res. 2011, 20, 284–308, doi:10.1016/j.gr.2011.03.006.
[33]  Gray, R.; Pysklywec, R.N. Geodynamic models of mature continental collision: Evolution of an orogen from lithospheric subduction to continental retreat/delamination. J. Geophys. Res. 2012, 117, B03408:1–B03408:14.
[34]  Dickin, A.P. Crustal formation in the Grenville province: Nd-isotope evidence. Can. J. Earth Sci. 2000, 37, 165–181, doi:10.1139/e99-039.
[35]  McNutt, R.H.; Dickin, A.P. A comparison of Nd model ages and U/Pb zircon ages of Grenville granitoids: Constraints on the evolution of the Laurentian margin from 1.5 to 1.0 Ga. Terra Nova 2012, 24, 7–15, doi:10.1111/j.1365-3121.2011.01031.x.
[36]  Ross, G.M.; Villeneuve, M. Provenance of the Mesoproterozoic (1.45 Ga) Belt Basin (western North America): Another piece in the pre-Rodinian paleogeographic puzzle. Geol. Soc. Am. Bull. 2003, 115, 1191–1217.
[37]  Doe, M.F.; Jones, J.V., III; Karlstrom, K.E.; Thrane, K.; Frei, D.; Gehrels, G.; Pecha, M. Basin formation near the end of the 1.6–1.45 Ga tectonic gap in southern Laurentia: Mesoproterozoic Hess Canyon Grojup of Arizona and implications for ca. 1.5 Ga supercontinent configurations. Lithosphere 2012, 4, 77–88, doi:10.1130/L160.1.
[38]  Isozaki, Y.; Aoki, K.; Nakama, T.; Yanai, S. New insight into a subduction-related orogen: A reappraisal of the geotectonic framework and evolution of the Japanese islands. Gondwana Res. 2010, 18, 82–105, doi:10.1016/j.gr.2010.02.015.
[39]  Anderson, J.L.; Bender, E.E. Nature and origin of Proterozoic A-type granitic magmatism in the southwestern United States. Lithos 1989, 23, 19–52, doi:10.1016/0024-4937(89)90021-2.
[40]  Van Schmus, W.R.; Bickford, M.E.; Condie, K.C. Early Proterozoic crustal evolution. In Precambrian: Conterminous United States; Reed, J.C., Jr, Ed.; Geological Society of America: Boulder, CO, USA, 1993; Volume C-2, pp. 270–281.
[41]  Vigneresse, J.L. The specific case of the mid-Proterozoic rapakivi granites and associated suite within the context of the Columbia supercontinent. Precambr. Res. 2005, 137, 1–34, doi:10.1016/j.precamres.2005.01.001.
[42]  Goodge, J.W.; Vervoort, J.D. Origin of Mesoproterozoic A-type granites in Laurentia: Hf isotope evidence. Earth Planet. Sci. Lett. 2006, 243, 711–731, doi:10.1016/j.epsl.2006.01.040.
[43]  Heinonen, A.P.; Andersen, T.; Ramo, O.T. Re-evaluation of Rapakivi pertrogenesis: Source constraints from the Hf isotope composition of zircon in the rapakivi granties and associated mafic rocks of southern Finland. J. Petrol. 2010, 51, 1687–1709, doi:10.1093/petrology/egq035.
[44]  Slagstad, T.; Culshaw, N.G.; Daly, J.S.; Jamieson, R.A. Western Grenville province holds key to midcontinental granite-rhyolite province enigma. Terra Nova 2009, 21, 181–187, doi:10.1111/j.1365-3121.2009.00871.x.
[45]  Rutanen, H.; Andersson, U.B.; Vaisanen, M.; Johansson, A.; Frojdo, S.; Lahaye, Y.; Eklund, O. 1.8 Ga magmatism in southern Finland: Strongly enriched mantle and juvenile crustal sources in a post-collisional setting. Int. Geol. Rev. 2011, 53, 1622–1683, doi:10.1080/00206814.2010.496241.
[46]  Korenaga, J. Archean geodynamics and the thermal evolution of Earth. Am. Geophys. Union Monogr. Ser. 2006, 164, 7–32, doi:10.1029/164GM03.
[47]  Korenaga, J. Plate tectonics, flood basalts and the evolution of Earth’s oceans. Terra Nova 2008, 20, 419–439, doi:10.1111/j.1365-3121.2008.00843.x.
[48]  Korenaga, J. Thermal evolution with a hydrating mantle and the initiation of plate tectonics in the early Earth. J. Geophys. Res. 2011, 116, B12403:1–B12403:20, doi:10.1029/2011JB008410.
[49]  Clift, P.; Vannucchi, P. Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust. Rev. Geophys. 2004, 42, RG2001:1–RG2001:31.
[50]  Stern, R.J.; Scholl, D.W. Yin and Yang of continental crust creation and destruction by plate tectonic processes. Int. Geol. Rev. 2010, 52, 1–31, doi:10.1080/00206810903332322.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133