Modification of the Continental Crust by Subduction Zone Magmatism and Vice-Versa: Across-Strike Geochemical Variations of Silicic Lavas from Individual Eruptive Centers in the Andean Central Volcanic Zone
To better understand the origin of across-strike K 2O enrichments in silicic volcanic rocks from the Andean Central Volcanic Zone, we compare geochemical data for Quaternary volcanic rocks erupted from three well-characterized composite volcanoes situated along a southeast striking transect between 21° and 22° S latitude (Aucanquilcha, Ollagüe, and Uturuncu). At a given SiO 2 content, lavas erupted with increasing distance from the arc front display systematically higher K 2O, Rb, Th, Y, REE and HFSE contents; Rb/Sr ratios; and Sr isotopic ratios. In contrast, the lavas display systematically lower Al 2O 3, Na 2O, Sr, and Ba contents; Ba/La, Ba/Zr, K/Rb, and Sr/Y ratios; Nd isotopic ratios; and more negative Eu anomalies toward the east. We suggest that silicic magmas along the arc front reflect melting of relatively young, mafic composition amphibolitic source rocks and that the mid- to deep-crust becomes increasingly older with a more felsic bulk composition in which residual mineralogies are progressively more feldspar-rich toward the east. Collectively, these data suggest the continental crust becomes strongly hybridized beneath frontal arc localities due to protracted intrusion of primary, mantle-derived basaltic magmas with a diminishing effect behind the arc front because of smaller degrees of mantle partial melting and primary melt generation.
References
[1]
Dickinson, W.R.; Hatherton, T. Andesitic volcanism and seismicity around pacific. Science 1967, 157, 801–803.
Jakes, P.; White, A.J.R. Major and trace-element abundances in volcanic-rocks of orogenic areas. Geol. Soc. Am. Bull. 1972, 83, 29–40, doi:10.1130/0016-7606(1972)83[29:MATEAI]2.0.CO;2.
[4]
Tatsumi, Y.; Eggins, S. Subduction Zone Magmatism; Blackwell Science: Oxford, UK, 1995.
[5]
Dickinson, W.R. Potash-depth (K-h) relations in continental-margin and intra-oceanic magmatic arcs. Geology 1975, 3, 53–56, doi:10.1130/0091-7613(1975)3<53:PKRICM>2.0.CO;2.
[6]
Churikova, T.; Dorendorf, F.; Worner, G. Sources and fluids in the mantle wedge below Kamchatka, evidence from across-arc geochemical variation. J. Petrol. 2001, 42, 1567–1593.
[7]
Feeley, T.C. Origin and tectonic implications of across-strike geochemical variations in the Eocene Absaroka volcanic province, United States. J. Geol. 2003, 111, 329–346, doi:10.1086/373972.
[8]
Hickey-Vargas, R.; Roa, H.M.; Escobar, L.L.; Frey, F.A. Geochemical variations in Andean basaltic and silicic lavas from the Villarrica-Lanin volcanic chain (39.5° S): An evaluation of source heterogeneity, fractional crystallization and crustal assimilation. Contrib. Mineral. Petrol. 1989, 103, 361–386, doi:10.1007/BF00402922.
[9]
Leeman, W.P.; Smith, D.R.; Hildreth, W.; Palacz, Z.; Rogers, N. Compositional diversity of Late Cenozoic basalts in a transect across the southern Washington Cascades: Implications for subduction zone magmatism. J. Geophys. Res. Solid 1990, 95, 19561–19582.
[10]
Patino, L.C.; Carr, M.J.; Feigenson, M.D. Cross-arc geochemical variations in volcanic fields in Honduras CA: Progressive changes in source with distance from the volcanic front. Contrib. Mineral. Petrol. 1997, 129, 341–351, doi:10.1007/s004100050341.
[11]
Ryan, J.G.; Morris, J.; Tera, F.; Leeman, W.P.; Tsvetkov, A. Cross-arc geochemical variations in the Kurile Arc as a function of slab depth. Science 1995, 270, 625–627.
[12]
Stolper, E.; Newman, S. The role of water in the petrogenesis of Mariana Trough magmas. Earth Planet. Sci. Lett. 1994, 121, 293–325.
[13]
Walker, J.A.; Carr, M.J.; Patino, L.C.; Johnson, C.M.; Feigenson, M.D.; Ward, R.L. Abrupt change in magma generation processes across the Central-American arc in southeastern Guatemala: Flux dominated melting near the base of the wedge to decompression melting near the top of the wedge. Contrib. Mineral. Petrol. 1995, 120, 378–390, doi:10.1007/BF00306515.
[14]
Coira, B.; Kay, S.M. Implications of Quaternary volcanism at Cerro Tuzgle for crustal and mantle evolution of the Puna Plateau, Central Andes, Argentina. Contrib. Mineral. Petrol. 1993, 113, 40–58, doi:10.1007/BF00320830.
[15]
Caffe, P.J.; Trumbull, R.B.; Coira, B.L.; Romer, R.L. Petrogenesis of Early Neogene magmatism in the northern Puna; Implications for magma genesis and crustal processes in the Central Andean Plateau. J. Petrol. 2002, 43, 907–942, doi:10.1093/petrology/43.5.907.
[16]
Kay, S.M.; Mpodzis, C.; Coria, B. Neogene Magmatism, Tectonism, and Mineral Deposits of the Central Andes (22° to 33° S Latitude). In Geology and Ore Deposits of the Central Andes; Skinner, B.J., Ed.; Society of Economic Geologists: Littleton, CO, USA, 1999; pp. 27–59.
[17]
Kay, S.M.; Coira, B.L.; Caffe, P.J.; Chen, C.H. Regional chemical diversity, crustal and mantle sources and evolution of Central Andean Puna Plateau ignimbrites. J. Volcanol. Geotherm. Res. 2010, 198, 81–111, doi:10.1016/j.jvolgeores.2010.08.013.
[18]
Schnurr, W.B.W.; Trumbull, R.B.; Clavero, J.; Hahne, K.; Siebel, W.; Gardeweg, M. Twenty-five million years of silicic volcanism in the southern Central Volcanic Zone of the Andes: Geochemistry and magma genesis of ignimbrites from 25° to 27° S, 67° to 72° W. J. Volcanol. Geotherm. Res. 2007, 166, 17–46, doi:10.1016/j.jvolgeores.2007.06.005.
[19]
Trumbull, R.D.; Wittenbrink, R.; Hahne, K.; Emmermann, R.; Busch, W.; Gerstenberger, H.; Siebel, W. Evidence for Late Miocene to recent contamination of arc andesites by crustal melts in the Chilean Andes (25–26° S) and its geodynamic implications. J. S. Am. Earth Sci. 1999, 12, 135–155, doi:10.1016/S0895-9811(99)00011-5.
[20]
Hildreth, W.; Moorbath, S. Crustal contributions to arc magmatism in the Andes of central Chile. Contrib. Mineral. Petrol. 1988, 98, 455–489, doi:10.1007/BF00372365.
[21]
Plank, T.; Langmuir, C.H. An evaluation of the global variations in the major element chemistry of arc basalts. Earth Planet. Sci. Lett. 1988, 90, 349–370, doi:10.1016/0012-821X(88)90135-5.
Feeley, T.C. Volcan Ollagüe: Volcanology, Petrology and Geochemistry of a Major Quaternary Stratovolcano in the Andean Central Volcanic Zone. Ph.D. Thesis, University of California, Los Angeles, CA, USA, June 1993.
[24]
Feeley, T.C.; Clynne, M.A.; Winer, G.S.; Grice, W.C. Oxygen isotope geochemistry of the Lassen Volcanic Center, California: Resolving crustal and mantle contributions to continental arc magmatism. J. Petrol. 2008, 49, 971–997, doi:10.1093/petrology/egn013.
[25]
Feeley, T.C.; Davidson, J.P. Petrology of calc-alkaline lavas at Volcan Ollagüe and the origin of compositional diversity at Central Andean stratovolcanoes. J. Petrol. 1994, 35, 1295–1340, doi:10.1093/petrology/35.5.1295.
[26]
Feeley, T.C.; Sharp, Z.D. 18O/16O isotope geochemistry of silicic lava flows erupted from Volcan Ollagüe, Andean Central Volcanic Zone. Earth Planet. Sci. Lett. 1995, 133, 239–254, doi:10.1016/0012-821X(95)00094-S.
[27]
Grunder, A.L.; Klemetti, E.W.; Feeley, T.C.; McKee, C.M. Eleven million years of arc volcanism at the Aucanquilcha volcanic cluster, northern Chilean Andes: Implications for the life span and emplacement of plutons. Trans. Roy. Soc. Ed. Earth 2006, 97, 415–436.
[28]
Allmendinger, R.W.; Jordan, T.E.; Kay, S.M.; Isacks, B.L. The evolution of the Altiplano-Puna Plateau of the Central Andes. Annu. Rev. Earth Planet. Sci. 1997, 25, 139–174, doi:10.1146/annurev.earth.25.1.139.
[29]
Beck, S.L.; Zandt, G.; Myers, S.C.; Wallace, T.C.; Silver, P.G.; Drake, L. Crustal-thickness variations in the Central Andes. Geology 1996, 24, 407–410, doi:10.1130/0091-7613(1996)024<0407:CTVITC>2.3.CO;2.
[30]
James, D.E. Plate Tectonic model for evolution of Central Andes. Geol. Soc. Am. Bull. 1971, 82, 3325–3346, doi:10.1130/0016-7606(1971)82[3325:PTMFTE]2.0.CO;2.
[31]
Schmitz, M.; Heinsohn, W.D.; Schilling, F.R. Seismic, gravity and petrological evidence for partial melt beneath the thickened Central Andean crust (21–23° S). Tectonophysics 1997, 270, 313–326, doi:10.1016/S0040-1951(96)00217-X.
[32]
Beck, S.L.; Zandt, G. The nature of orogenic crust in the Central Andes. J. Geophys. Res. Solid Earth 2002, 107, doi:10.1029/2000JB000124.
[33]
McGlashan, N.; Brown, L.; Kay, S.M. Crustal thickness in the Central Andes from teleseismically recorded depth phase precursors. Geophys. J. Int. 2008, 175, 1013–1022, doi:10.1111/j.1365-246X.2008.03897.x.
[34]
Yuan, X.; Sobolev, S.V.; Kind, R.; Oncken, O.; Bock, G.; Asch, G.; Schurr, B.; Graeber, F.; Rudloff, A.; Hanka, W.; et al. Subduction and collision processes in the Central Andes constrained by converted seismic phases. Nature 2000, 408, 958–961, doi:10.1038/35050073.
[35]
Yuan, X.; Sobolev, S.V.; Kind, R. Moho Topography in the Central Andes and its geodynamic implications. Earth Planet. Sci. Lett. 2002, 199, 389–402, doi:10.1016/S0012-821X(02)00589-7.
[36]
Mamani, M.; Tassara, A.; Woerner, G. Composition and structural control of crustal domains in the Central Andes. Geochem. Geophys. Geosyst. 2008, 9, doi:10.1029/2007GC001925.
[37]
Mamani, M.; Worner, G.; Sempere, T. Geochemical variations in igneous rocks of the Central Andean orocline (13° S to 18° S): Tracing crustal thickening and magma generation through time and space. Geol. Soc. Am. Bull. 2010, 122, 162–182, doi:10.1130/B26538.1.
[38]
Avila-Salinas, W. Petrological and Tectonic Evolution of Cenozoic Volcanism in the Bolivian Western Andes. In Andean Magmatism and Its Tectonic Setting; Harmon, R.S., Rapela, C.W., Eds.; Geological Society of America: Boulder, CO, USA, 1991; Volume 265, pp. 245–258. Geological Society of America Special Paper.
[39]
Deruelle, B. Calc-alkaline and shoshonitic lavas from 5 Andean volcanos (between latitudes 21°45' S and 24°30' S) and distribution of Plio-Quaternary volcanism of south-Central and Southern Andes. J. Volcanol. Geotherm. Res. 1978, 3, 281–298, doi:10.1016/0377-0273(78)90039-2.
[40]
Du Bray, E.A.; Ludington, S.; Brooks, W.E.; Gamble, B.M.; Ratte, J.C.; Richter, D.H.; Soria-Escalante, E. Compositional Characteristics of Middle to Upper Tertiary Volcanic Rocks of the Bolivian Altiplano; U.S. Geological Survey: Reston, VA, USA, 1995.
[41]
Feeley, T.C. Crustal modification during subduction-zone magmatism: Evidence from the southern Salar De Uyuni region (20°–22° S), Central Andes. Geology 1993, 21, 1019–1022, doi:10.1130/0091-7613(1993)021<1019:CMDSZM>2.3.CO;2.
[42]
Fernandez, C.; Horman, P.K.; Kussmaul, S.; Meave, J.; Pichler, H.; Subieta, T. First petrologic data on young volcanic rocks of SW-Bolivia. Tsch. Mineral. Petrogr. Mitt. 1973, 19, 149–172, doi:10.1007/BF01167425.
[43]
Klerkx, J.; Deutsch, S.; Pichler, H.; Zeil, W. Strontium isotopic composition and trace-element data bearing on origin of Cenozoic volcanic-rocks of Central and Southern Andes. J. Volcanol. Geotherm. Res. 1977, 2, 49–71, doi:10.1016/0377-0273(77)90015-4.
[44]
Kussmaul, S.; Hormann, P.K.; Ploskonka, E.; Subieta, T. Volcanism and structure of southwestern Bolivia. J. Volcanol. Geotherm. Res. 1977, 2, 73–111, doi:10.1016/0377-0273(77)90016-6.
[45]
Thorpe, R.S.; Francis, P.W. Variations in Andean andesite compositions and their petrogenetic significance. Tectonophysics 1979, 57, 53–70, doi:10.1016/0040-1951(79)90101-X.
[46]
Lamb, S.H.; Hoke, L.; Kennan, L.; Dewey, J. Cenozoic Evolution of the Central Andes in Bolivia and Northern Chile. In Orogeny Through Time. Geological Society Special Publication No. 121; Burg, J.P., Ford, M., Eds.; The Geologic Society: London, UK, 1997; pp. 237–264.
[47]
Feeley, T.C.; Hacker, M.D. Intracrustal derivation of Na-rich andesitic and dacitic magmas: An example from Volcan Ollagüe, Andean Central Volcanic Zone. J. Geol. 1995, 103, 213–225.
[48]
Sparks, R.S.J.; Folkes, C.B.; Humphreys, M.C.S.; Barfod, D.N.; Clavero, J.; Sunagua, M.C.; McNutt, S.R.; Pritchard, M.E. Uturuncu Volcano, Bolivia: Volcanic unrest due to mid-crustal magma intrusion. Am. J. Sci. 2008, 308, 727–769, doi:10.2475/06.2008.01.
[49]
De Silva, S.L.; Francis, P.W. Volcanoes of the Central Andes; Springer-Verlag: New York, NY, USA, 1991.
[50]
Zandt, G.; Leidig, M.; Chmielowski, J.; Baumont, D.; Yuan, X.H. Seismic detection and characterization of the Altiplano-Puna Magma Body, Central Andes. Pure Appl. Geophys. 2003, 160, 789–807, doi:10.1007/PL00012557.
[51]
De Silva, S.L.; Zandt, G.; Trumbull, R.; Viramonte, J.; Salas, G.; Jiminez, N. Large Ignimbrite Eruptions and Volcano-Tectonic Depressionsin the Central Andes: A Thermomechanical Perspective. In Mechanisms of Activity and Unrest at Large Calderas. Geological Society Special Publication No. 269; Troise, C., De Natale, G., Kilburn, C.R.J., Eds.; The Geologic Society: London, UK, 2006; pp. 47–63.
[52]
De Silva, S.L. Altiplano-Puna Volcanic Complex of the Central Andes. Geology 1989, 17, 1102–1106, doi:10.1130/0091-7613(1989)017<1102:APVCOT>2.3.CO;2.
[53]
Baker, M.C.W.; Francis, P.W. Upper Cenozoic volcanism in Central Andes—Ages and volumes. Earth Planet. Sci. Lett. 1978, 41, 175–187, doi:10.1016/0012-821X(78)90008-0.
[54]
Gradstein, F.M.; Ogg, J.G.; Smith, A.G. A Geologic Time Scale 2004; Cambridge University Press: Cambridge, UK, 2004.
[55]
Somoza, R.; Ghidella, M.E. Convergencia en el margen occidental de América del Sur durante el Cenozoico: Subducción de las Placas de Nazca, Farallon y Phoenix. Rev. Assoc. Geol. Argent. 2005, 60, 797–809. (in Spanish).
[56]
Somoza, R.; Ghidella, M.E. Late Cretaceous to recent plate motioins in western South America revisited. Earth Planet. Sci. Lett. 2012, 331–332, 152–163, doi:10.1016/j.epsl.2012.03.003.
[57]
Gregory-Wodzicki, K.M. Uplift history of the Central and Northern Andes: A review. Bull. Geol. Soc. Am. 2000, 112, 1091–1105, doi:10.1130/0016-7606(2000)112<1091:UHOTCA>2.0.CO;2.
[58]
Isacks, B.L. Uplift of the Central Andean Plateau and bending of the Bolivian orocline. J. Geophys. Res. Solid 1988, 93, 3211–3231, doi:10.1029/JB093iB04p03211.
[59]
Kay, S.M.; Coira, B.L.; Kay, R.W. Central Andean Galan Ignimbrites: Magma evolution from the mantle to eruption in a thickened crust. Geochim. Cosmochim. Acta 2009, 73, A630.
[60]
Klemetti, E.W.; Grunder, A.L. Volcanic evolution of Volcan Aucanquilcha: A long-lived dacite volcano in the Central Andes of northern Chile. Bull. Volcanol. 2008, 70, 633–650, doi:10.1007/s00445-007-0158-x.
[61]
Klemetti, E.W. Constraining the Magmatic Evolution of the Andean Arc at 21° S Using the Volcanic and Petrologic History of Volcán Aucanquilcha, Central Volcanic Zone, Northern Chile. Ph.D. Thesis, Oregon State University, Corvalis, OR, USA, February 2005.
[62]
Simkin, T.; Siebert, S.L. Volcanoes of the World: a Regional Directory, Gazetteer, and Chronologyof Volcanism During the Last 10,000 Years; Geosciences Press: Tucson, AZ, USA, 1994.
[63]
Feeley, T.C.; Davidson, J.P.; Armendia, A. The volcanic and magmatic evolution of Volcan Ollagüe, a high-K, Late Quaternary stratovolcano in the Andean Central Volcanic Zone. J. Volcanol. Geotherm. Res. 1993, 54, 221–245, doi:10.1016/0377-0273(93)90065-Y.
[64]
Worner, G.; Lezaun, J.; Beck, A.; Heber, V.; Lucassen, F.; Zinngrebe, E.; Rossling, R.; Wilke, H.G. Precambrian and Early Paleozoic evolution of the Andean basement at Belen (northern Chile) and Cerro Uyarani (western Bolivia Altiplano). J. S. Am. Earth Sci. 2000, 13, 717–737, doi:10.1016/S0895-9811(00)00056-0.
[65]
Clavero, J.; Polanco, E.; Godoy, E.; Aguilar, G.; Sparks, R.S.J.; van Wykde Vries, B.; Pérez de Arce, C.; Matthews, S. Substrata influence in the transport and emplacement mechanism of the Ollagüe debris avalanche (northern Chile). Acta Vulcanol. 2004, 16, 59–76.
[66]
Vezzoli, L.; Tibaldi, A.; Renzulli, A.; Menna, M.; Flude, S. Faulting-assisted lateral collapses and influence on shallow magma feeding systems at Ollagüe volcano (Central Volcanic Zone, Chile-Bolivia Andes). J. Volcanol. Geotherm. Res. 2008, 171, 137–159, doi:10.1016/j.jvolgeores.2007.11.015.
[67]
Johnson, D.M.; Hooper, P.R.; Conrey, R.M. XRF Analysis of rocks and minerals for major and trace elements on a single low dilution Li-tetraborate fused bead. Adv. X-Ray Anal. 1999, 41, 843–867.
[68]
Jarvis, K.E. Inductively coupled plasma mass-spectrometry: A new technique for the rapid or ultra-trace level determination of the rare-earth elements in geological-materials. Chem. Geol. 1988, 68, 31–39, doi:10.1016/0009-2541(88)90084-8.
[69]
Ramos, F.C.; Reid, M.R. Distinguishing melting of heterogeneous mantle sources from crustal contamination: Insights from Sr isotopes at the phenocryst scale, Pisgah Crater, California. J. Petrol. 2005, 46, 999–1012, doi:10.1093/petrology/egi008.
[70]
Todt, W.; Cliff, R.A.; Hanser, A.; Hofmann, A.W. Evaluation of a 202Pb-205Pb Double Spike for High-Precision Lead Isotope Analysis. In Earth Processes: Reading the Isotope Code; Hart, S.R., Basu, A., Eds.; American Geophysical Union: Washington, DC, USA, 1996; Volume 95, pp. 429–437.
[71]
Takeuchi, A.; Larson, P.B. Oxygen isotope evidence for the Late Cenozoic development of an orographic rain shadow in eastern Washington, USA. Geology 2005, 33, 313–316, doi:10.1130/G21335.1.
[72]
Valley, J.W.; Kitchen, N.; Kohn, M.J.; Niendorf, C.R.; Spicuzza, M.J. UWG-2, A garnet standard for oxygen isotope ratios: Strategies for high precision and accuracy with laser heating. Geochim. Cosmochim. Acta 1995, 59, 5223–5231, doi:10.1016/0016-7037(95)00386-X.
[73]
Michelfelder, G.S.; Feeley, T.C.; Wilder, A.D.; Thacker, J. Mixing Following Assimilation-Fractional Crystallization at Cerro Uturuncu, Andean Central Volcanic Zone, SW Bolivia as Revealed from in Situ Laser Ablation Isotopic Analysis of Plagioclase. In Proceedings of International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) 2013 Scientific Assembly, Kagoshima, Japan, 20–24 July 2013; pp. 1847–1841.
[74]
Muir, D.D.; Blundy, J.; Hutchinson, M.C.; Rust, A.C. Petrological imaging of an active pluton beneath Cerro Uturuncu, Bolivia. Contrib. Mineral. Petrol. 2013. submitted for publication.
[75]
Fialko, Y.; Pearse, J. Sombrero uplift above the Altiplano-Puna Magma Body: Evidence of a ballooning mid-crustal diapir. Science 2012, 338, 250–252, doi:10.1126/science.1226358.
[76]
Henderson, S.T.; Pritchard, M.E. Decadal volcanic deformation in the Central Andes Volcanic Zone revealed by InSAR time series. Geochem. Geophys. Geosyst. 2013, 14, 1358–1374, doi:10.1002/ggge.20074.
[77]
Jay, J.A.; Pritchard, M.E.; West, M.E.; Christensen, D.; Haney, M.; Minaya, E.; Sunagua, M.; McNutt, S.R.; Zabala, M. Shallow seismicity, triggered seismicity, and ambient noise tomography at the long-dormant Uturuncu Volcano, Bolivia. Bull. Volcanol. 2012, 74, 817–837, doi:10.1007/s00445-011-0568-7.
[78]
Walker, B.A., Jr.; Klemetti, E.W.; Grunder, A.L.; Dilles, J.H.; Tepley, F.J.; Gile, D. Crystal reaming during the assembly, maturation, and waning of an eleven-million-year crustal magma cycle: Thermobarometry of the Aucanquilcha Volcanic Cluster. Contrib. Mineral. Petrol. 2013, 165, 663–682, doi:10.1007/s00410-012-0829-2.
[79]
Mattioli, M.; Renzulli, A.; Menna, M.; Holm, P.M. Rapid ascent and contamination of magmas through the thick crust of the CVZ (Andes, Ollague region): Evidence from a nearly aphyric high-K andesite with skeletal olivines. J. Volcanol. Geotherm. Res. 2006, 158, 87–105, doi:10.1016/j.jvolgeores.2006.04.019.
[80]
Le Maitre, R.W. Igneous Rocks, A Classification and Glossary of Terms; Cambridge University Press: Cambridge, UK, 2002.
[81]
Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle compositions and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345, doi:10.1144/GSL.SP.1989.042.01.19.
[82]
Hickey, R.L.; Frey, F.A.; Gerlach, D.C.; Lopez-Escobar, L. Multiple sources for basaltic arc rocks from the Southern Volcanic Zone of the Andes (34°–41° S): Trace element and isotopic evidence for contributions from subducted oceanic crust, mantle, and continental crust. J. Geophys. Res. Solid Earth 1986, 91, 5963–5983, doi:10.1029/JB091iB06p05963.
[83]
Rollinson, H.R. Using Geochemical Data: Evaluation, Presentation, Interpretation; John Wiley and Sons: New York, NY, USA, 1993.
[84]
Bindeman, I.N.; Eiler, J.M.; Yogodzinski, G.M.; Tatsumi, Y.; Stern, C.R.; Grove, T.L.; Portnyagin, M.; Hoernle, K.; Danyushevsky, L.V. Oxygen isotope evidence for slab melting in modern and ancient subduction zones. Earth Planet. Sci. Lett. 2005, 235, 480–496, doi:10.1016/j.epsl.2005.04.014.
[85]
Bindeman, I.N.; Ponomareva, V.V.; Bailey, J.C.; Valley, J.W. Volcanic arc of Kamchatka: A province with high-δ18O magma sources and large-scale 18O/16O depletion of the upper crust. Geochim. Cosmochim. Acta 2004, 68, 841–865, doi:10.1016/j.gca.2003.07.009.
[86]
Valley, J.W. Stable isotope thermometry at high temperatures. Rev. Mineral. Geochem. 2001, 43, 365–413, doi:10.2138/gsrmg.43.1.365.
[87]
Aitcheson, S.J.; Harmon, R.S.; Moorbath, S.; Schneider, A.; Soler, P.; Soriaescalante, E.; Steele, G.; Swainbank, I.; Worner, G. Pb isotopes define basement domains of the Altiplano, Central Andes. Geology 1995, 23, 555–558, doi:10.1130/0091-7613(1995)023<0555:PIDBDO>2.3.CO;2.
[88]
Elburg, M.A.; van Bergen, M.; Hoogewerff, J.; Foden, J.; Vroon, P.; Zulkarnain, I.; Nasution, A. Geochemical trends across an arc-continent collision zone: Magma sources and slab-wedge transfer processes below the Pantar Strait Volcanoes, Indonesia. Geochim. Cosmochim. Acta 2002, 66, 2771–2789, doi:10.1016/S0016-7037(02)00868-2.
[89]
Dreher, S.T.; Macpherson, C.G.; Pearson, D.G.; Davidson, J.P. Re-Os isotope studies of Mindanao Adakites: Implications for sources of metals and melts. Geology 2005, 33, 957–960, doi:10.1130/G21755.1.
[90]
Ayers, J. Trace element modeling of aqueous fluid—Peridotite interaction in the mantle wedge of subduction zones. Contrib. Mineral. Petrol. 1998, 132, 390–404, doi:10.1007/s004100050431.
[91]
Brenan, J.M.; Shaw, H.F.; Ryerson, F.J.; Phinney, D.L. Mineral-aqueous fluid partitioning of trace-elements at 900 °C and 2.0 GPa—Constraints on the trace-element chemistry of mantle and deep-crustal fluids. Geochim. Cosmochim. Acta 1995, 59, 3331–3350, doi:10.1016/0016-7037(95)00215-L.
[92]
Schmidt, M.W.; Poli, S. Experimentally based water budgets of dehydrating slabs and consequencesfor arc magma generation. Earth Planet. Sci. Lett. 1998, 163, 361–379, doi:10.1016/S0012-821X(98)00142-3.
[93]
Danyushevsky, L.V.; Falloon, T.J.; Sobolev, A.V.; Crawford, A.J.; Carroll, M.; Price, R.C. The H2O content of basalt glasses from southwest Pacific back-arc basins. Earth Planet. Sci. Lett. 1993, 117, 347–362, doi:10.1016/0012-821X(93)90089-R.
[94]
Newman, S.; Stolper, E.; Stern, R. H2O and CO2 in magmas from the Mariana arc and back arc systems. Geochem. Geophys. Geosyst. 2000, 1, doi:10.1029/1999GC000027.
[95]
Shibata, T.; Nakamura, E. Across-arc variations of isotope and trace element compositions from Quaternary basaltic volcanic rocks in northeastern Japan: Implications for interaction between subducted oceanic slab and mantle wedge. J. Geophys. Res. Solid Earth 1997, 102, 8051–8064, doi:10.1029/96JB03661.
[96]
Davidson, J.P.; Hannon, R.S.; Womer, G. The Source of Central Andean Magmas: Some Considerations. In Andean Magmatism and Its Tectonic Setting; Hannon, R.S., Rapela, C.W., Eds.; Geological Society of America: Denver, CO, USA, 1991; pp. 825–843.
[97]
Hawkesworth, C.J.; Clarke, C.B. Partial Melting in the Lower Crust: New Constraints on Crustal Contamination Processes in the Central Andes. In Tectonics of the Southern Central Andes; Reutter, K.J., Scheurber, E., Wigger, P.J., Eds.; Springer-Verlag: New York, NY, USA, 1994; pp. 93–101.
[98]
Sen, C. Subduction Related Petrologic Processes: 1—Dehydration Melting of a Basaltic Composition Amphibolites. 2—Mantle Metasomatism. Ph.D. Thesis, University of New Brunswick, New Brunswick, Canada, February 1994.
[99]
Dostal, J.; Zentilli, M.; Caelles, J.C.; Clark, A.H. Geochemistry and origin of volcanic-rocks of Andes (26°–28° S). Contrib. Mineral. Petrol. 1977, 63, 113–128, doi:10.1007/BF00398774.
[100]
Lucassen, F.; Becchio, R.; Wilke, H.G.; Franz, G.; Thirlwall, M.F.; Viramonte, J.; Wemmer, K. Proterozoic-Paleozoic development of the basement of the Central Andes (18–26° S)—A mobile belt of the South American craton. J. S. Am. Earth Sci. 2000, 13, 697–715, doi:10.1016/S0895-9811(00)00057-2.
[101]
Lucassen, F.; Franz, G.; Laber, A. Permian high pressure rocks—The basement of the Sierra de Limon Verde in northern Chile. J. S. Am. Earth Sci. 1999, 12, 183–199, doi:10.1016/S0895-9811(99)00013-9.
[102]
Lucassen, F.; Kramer, W.; Bartsch, V.; Wilke, H.G.; Franz, G.; Romer, R.L.; Dulski, P. Nd, Pb, and Sr isotope composition of juvenile magmatism in the Mesozoic large magmatic province of northern Chile (18°–27° S): Indications for a uniform subarc mantle. Contrib. Mineral. Petrol. 2006, 152, 571–589, doi:10.1007/s00410-006-0119-y.
[103]
Lucassen, F.; Lewerenz, S.; Franz, G.; Viramonte, J.; Mezger, K. Metamorphism, isotopic ages and composition of lower crustal granulite xenoliths from the Cretaceous Salta Rift, Argentina. Contrib. Mineral. Petrol. 1999, 134, 325–341, doi:10.1007/s004100050488.
[104]
Perez, W.A.; Kawashita, K. K-Ar and Rb-Sr geochronology of igneous rocks from the Sierra de Paiman, northwestern Argentina. J. S. Am. Earth Sci. 1992, 5, 251–264, doi:10.1016/0895-9811(92)90024-S.
[105]
Lucassen, F.; Becchio, R.; Harmon, R.; Kasemann, S.; Franz, G.; Trumbull, R.; Wilke, H.G.; Romer, R.L.; Dulski, P. Composition and density model of the continental crust at an active continental margin—The Central Andes between 21° and 27° S. Tectonophysics 2001, 341, 195–223, doi:10.1016/S0040-1951(01)00188-3.
[106]
Lucassen, F.; Franz, G.; Thirlwall, M.F.; Mezger, K. Crustal recycling of metamorphic basement: Late Palaeozoic granitoids of northern Chile (similar to 22° S). Implications for the composition of the Andean crust. J. Petrol. 1999, 40, 1527–1551, doi:10.1093/petroj/40.10.1527.
[107]
Lucassen, F.; Harmon, R.; Franz, G.; Romer, R.L.; Becchio, R.; Siebel, W. Lead evolution of the pre-Mesozoic crust in the Central Andes (18–27° S): Progressive homogenisation of Pb. Chem. Geol. 2002, 186, 183–197.
[108]
Lucassen, F.; Escayola, M.; Romer, R.L.; Viramonte, J.; Koch, K.; Franz, G. Isotopic composition of late Mesozoic basic and ultrabasic rocks from the Andes (23–32° S)—Implications for the Andean mantle. Contrib. Mineral. Petrol. 2002, 143, 336–349, doi:10.1007/s00410-001-0344-3.
[109]
Lucassen, F.; Franz, G.; Romer, R.L.; Schultz, F.; Dulski, P.; Wemmer, K. Pre-Cenozoic intra-plate magmatism along the Central Andes (17–34° S): Composition of the mantle at an active margin. Lithos 2007, 99, 312–338.
[110]
Lucassen, F.; Franz, G.; Viramonte, J.; Romer, R.L.; Dulski, P.; Lang, A. The Late Cretaceous lithospheric mantle beneath the Central Andes: Evidence from phase equilibria and composition of mantle xenoliths. Lithos 2005, 82, 379–406.
[111]
Huang, W.L.; Wyllie, P.J. Phase-relationships of gabbro-tonalite-granite-water at 15-kbar with applications to differentiation and anatexis. Am. Mineral. 1986, 71, 301–316.
[112]
Litvinovsky, B.A.; Steele, I.M.; Wickham, S.M. Silicic magma formation in overthickened crust: Melting of charnockite and leucogranite at 15, 20 and 25 kbar. J. Petrol. 2000, 41, 717–737, doi:10.1093/petrology/41.5.717.
[113]
Ort, M.H.; Coira, B.L.; Mazzoni, M.M. Generation of a crust-mantle magma mixture: Magma sources and contamination at Cerro Panizos, Central Andes. Contrib. Mineral. Petrol. 1996, 123, 308–322, doi:10.1007/s004100050158.
[114]
Soler, M.M.; Caffe, P.J.; Coira, B.L.; Onoe, A.T.; Kay, S.M. Geology of the Vilama caldera: A new interpretation of a large-scale explosive event in the Central Andean plateau during the Upper Miocene. J. Volcanol. Geotherm. Res. 2007, 164, 27–53, doi:10.1016/j.jvolgeores.2007.04.002.
[115]
Morgan, G.B.; London, D.; Luedke, R.G. Petrochemistry of Late Miocene peraluminous silicic volcanic rocks from the Morococala field, Bolivia. J. Petrol. 1998, 39, 601–632, doi:10.1093/petroj/39.4.601.
[116]
Davidson, J.; Turner, S.; Handley, H.; Macpherson, C.; Dosseto, A. Amphibole “sponge” in arc crust? Geology 2007, 35, 787–790, doi:10.1130/G23637A.1.
[117]
Davidson, J.; Turner, S.; Plank, T. Dy/Dy*: variations arising from mantle sources and petrogenetic processes. J. Petrol. 2013, 54, 525–537, doi:10.1093/petrology/egs076.
[118]
Defant, M.J.; Drummond, M.S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 1990, 347, 662–665, doi:10.1038/347662a0.
[119]
Melzer, S.; Wunder, B. Island-arc basalt alkali ratios: Constraints from phengite-fluid partitioning experiments. Geology 2000, 28, 583–586, doi:10.1130/0091-7613(2000)28<583:IBARCF>2.0.CO;2.
[120]
Kushiro, I.; Nakamura, Y.; Haramura, H.; Akimoto, S.I. Crystallization of some lunar mafic magmas and generation of rhyolitic liquid. Science 1970, 167, 610–612.
[121]
Kushiro, I.; Syono, Y.; Akimoto, S.I. Melting of a peridotite nodule at high pressures and high water pressures. J. Geophys. Res. 1968, 73, 6023–6029, doi:10.1029/JB073i018p06023.
[122]
Kushiro, I.; Yoder, H.S.; Nishikaw, M. Effect of water on melting of enstatite. Geol. Soc. Am. Bull. 1968, 79, 1685–1692, doi:10.1130/0016-7606(1968)79[1685:EOWOTM]2.0.CO;2.
[123]
Tatsumi, Y.; Hamilton, D.L.; Nesbitt, R.W. Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas: Evidence from high-pressure experiments and natural rocks. J. Volcanol. Geotherm. Res. 1986, 29, 293–309, doi:10.1016/0377-0273(86)90049-1.
[124]
Mcculloch, M.T.; Gamble, J.A. Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet. Sci. Lett. 1991, 102, 358–374, doi:10.1016/0012-821X(91)90029-H.
[125]
Heydolph, K.; Hoernle, K.; Hauff, F.; van den Bogaard, P.; Portnyagin, M.; Bindeman, I.; Garbe-Schonberg, D. Along and across arc geochemical variations in NW Central America: Evidence for involvement of lithospheric pyroxenite. Geochim. Cosmochim. Acta 2012, 84, 459–491, doi:10.1016/j.gca.2012.01.035.
[126]
Hofmann, A.W. Chemical Differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett. 1988, 90, 297–314, doi:10.1016/0012-821X(88)90132-X.
[127]
Harmon, R.S.; Barreiro, B.A.; Moorbath, S.; Hoefs, J.; Francis, P.W.; Thorpe, R.S.; Deruelle, B.; Mchugh, J.; Viglino, J.A. Regional O-isotope, Sr-isotope, and Pb-isotope relationships in Late Cenozoic calc-alkaline lavas of the Andean Cordillera. J. Geol. Soc. Lond. 1984, 141, 803–822.
[128]
Davidson, J.P.; de Silva, S.L. Volcanic-rocks from the Bolivian Altiplano: insights into crustal structure, contamination, and magma genesis: Comment and reply. Geology 1992, 21, 1147–1149.