全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Genes  2013 

Genes Involved in Type 1 Diabetes: An Update

DOI: 10.3390/genes4030499

Keywords: Type 1 Diabetes (T1D), genome-wide association studies (GWAS), immune system, susceptibility loci, natural killer (NK) cells, pancreatic β-cells

Full-Text   Cite this paper   Add to My Lib

Abstract:

Type 1 Diabetes (T1D) is a chronic multifactorial disease with a strong genetic component, which, through interactions with specific environmental factors, triggers disease onset. T1D typically manifests in early to mid childhood through the autoimmune destruction of pancreatic β cells resulting in a lack of insulin production. Historically, prior to genome-wide association studies (GWAS), six loci in the genome were fully established to be associated with T1D. With the advent of high-throughput single nucleotide polymorphism (SNP) genotyping array technologies, enabling investigators to perform high-density GWAS, many additional T1D susceptibility genes have been discovered. Indeed, recent meta-analyses of multiple datasets from independent investigators have brought the tally of well-validated T1D disease genes to almost 60. In this mini-review, we address recent advances in the genetics of T1D and provide an update on the latest susceptibility loci added to the list of genes involved in the pathogenesis of T1D.

References

[1]  Steyn, N.P.; Lambert, E.V.; Tabana, H. Conference on “multidisciplinary approaches to nutritional problems”. Symposium on “diabetes and health”. Nutrition interventions for the prevention of type 2 diabetes. Proc. Nutr. Soc. 2009, 68, 55–70, doi:10.1017/S0029665108008823.
[2]  International Diabetes Federation. Available online: http://www.idf.org/diabetesatlas/ (accessed on 11 July 2013).
[3]  Eurodiab ACE study group. Variation and trends in incidence of childhood diabetes in europe. Lancet 2000, 355, 873–876, doi:10.1016/S0140-6736(99)07125-1.
[4]  Onkamo, P.; Vaananen, S.; Karvonen, M.; Tuomilehto, J. Worldwide increase in incidence of type Ι diabetes—The analysis of the data on published incidence trends. Diabetologia 1999, 42, 1395–1403, doi:10.1007/s001250051309.
[5]  Redondo, M.J.; Yu, L.; Hawa, M.; Mackenzie, T.; Pyke, D.A.; Eisenbarth, G.S.; Leslie, R.D. Heterogeneity of type Ι diabetes: Analysis of monozygotic twins in great britain and the united states. Diabetologia 2001, 44, 354–362, doi:10.1007/s001250051626.
[6]  Clayton, D.G. Prediction and interaction in complex disease genetics: Experience in type 1 diabetes. PLoS Genet. 2009, 5, e1000540, doi:10.1371/journal.pgen.1000540.
[7]  Rich, S.S. Mapping genes in diabetes. Genetic epidemiological perspective. Diabetes 1990, 39, 1315–1319.
[8]  Cudworth, A.G.; Woodrow, J.C. Evidence for hl-a-linked genes in “juvenile” diabetes mellitus. Br. Med. J. 1975, 3, 133–135, doi:10.1136/bmj.3.5976.133.
[9]  Nerup, J.; Platz, P.; Andersen, O.O.; Christy, M.; Lyngsoe, J.; Poulsen, J.E.; Ryder, L.P.; Nielsen, L.S.; Thomsen, M.; Svejgaard, A. Hl-a antigens and diabetes mellitus. Lancet 1974, 2, 864–866.
[10]  Singal, D.P.; Blajchman, M.A. Histocompatibility (hl-a) antigens, lymphocytotoxic antibodies and tissue antibodies in patients with diabetes mellitus. Diabetes 1973, 22, 429–432.
[11]  Bell, G.I.; Horita, S.; Karam, J.H. A polymorphic locus near the human insulin gene is associated with insulin-dependent diabetes mellitus. Diabetes 1984, 33, 176–183.
[12]  Nistico, L.; Buzzetti, R.; Pritchard, L.E.; van der Auwera, B.; Giovannini, C.; Bosi, E.; Larrad, M.T.; Rios, M.S.; Chow, C.C.; Cockram, C.S.; et al. The ctla-4 gene region of chromosome 2q33 is linked to, and associated with, type 1 diabetes. Belgian diabetes registry. Hum. Mol. Genet. 1996, 5, 1075–1080, doi:10.1093/hmg/5.7.1075.
[13]  Bottini, N.; Musumeci, L.; Alonso, A.; Rahmouni, S.; Nika, K.; Rostamkhani, M.; MacMurray, J.; Meloni, G.F.; Lucarelli, P.; Pellecchia, M.; et al. A functional variant of lymphoid tyrosine phosphatase is associated with type Ι diabetes. Nat. Genet. 2004, 36, 337–338, doi:10.1038/ng1323.
[14]  Vella, A.; Cooper, J.D.; Lowe, C.E.; Walker, N.; Nutland, S.; Widmer, B.; Jones, R.; Ring, S.M.; McArdle, W.; Pembrey, M.E.; et al. Localization of a type 1 diabetes locus in the il2ra/cd25 region by use of tag single-nucleotide polymorphisms. Am. J. Hum. Genet. 2005, 76, 773–779, doi:10.1086/429843.
[15]  Smyth, D.J.; Cooper, J.D.; Bailey, R.; Field, S.; Burren, O.; Smink, L.J.; Guja, C.; Ionescu-Tirgoviste, C.; Widmer, B.; Dunger, D.B.; et al. A genome-wide association study of nonsynonymous snps identifies a type 1 diabetes locus in the interferon-induced helicase (ifih1) region. Nat. Genet. 2006, 38, 617–619, doi:10.1038/ng1800.
[16]  International HapMap Consortium. The international hapmap project. Nature 2003, 426, 789–796, doi:10.1038/nature02168.
[17]  International HapMap Consortium. A haplotype map of the human genome. Nature 2005, 437, 1299–1320, doi:10.1038/nature04226.
[18]  Hakonarson, H.; Grant, S.F.; Bradfield, J.P.; Marchand, L.; Kim, C.E.; Glessner, J.T.; Grabs, R.; Casalunovo, T.; Taback, S.P.; Frackelton, E.C.; et al. A genome-wide association study identifies kiaa0350 as a type 1 diabetes gene. Nature 2007, 448, 591–594, doi:10.1038/nature06010.
[19]  Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007, 447, 661–678, doi:10.1038/nature05911.
[20]  Todd, J.A.; Walker, N.M.; Cooper, J.D.; Smyth, D.J.; Downes, K.; Plagnol, V.; Bailey, R.; Nejentsev, S.; Field, S.F.; Payne, F.; et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat. Genet. 2007, 39, 857–864, doi:10.1038/ng2068.
[21]  Hakonarson, H.; Qu, H.Q.; Bradfield, J.P.; Marchand, L.; Kim, C.E.; Glessner, J.T.; Grabs, R.; Casalunovo, T.; Taback, S.P.; Frackelton, E.C.; et al. A novel susceptibility locus for type 1 diabetes on chr12q13 identified by a genome-wide association study. Diabetes 2008, 57, 1143–1146, doi:10.2337/db07-1305.
[22]  Concannon, P.; Onengut-Gumuscu, S.; Todd, J.A.; Smyth, D.J.; Pociot, F.; Bergholdt, R.; Akolkar, B.; Erlich, H.A.; Hilner, J.E.; Julier, C.; et al. A human type 1 diabetes susceptibility locus maps to chromosome 21q22.3. Diabetes 2008, 57, 2858–2861, doi:10.2337/db08-0753.
[23]  Tsygankov, A.Y. Multidomain sts/tula proteins are novel cellular regulators. IUBMB Life 2008, 60, 224–231, doi:10.1002/iub.36.
[24]  Cohen, S.; Dadi, H.; Shaoul, E.; Sharfe, N.; Roifman, C.M. Cloning and characterization of a lymphoid-specific, inducible human protein tyrosine phosphatase, lyp. Blood 1999, 93, 2013–2024.
[25]  Cooper, J.D.; Walker, N.M.; Smyth, D.J.; Downes, K.; Healy, B.C.; Todd, J.A. Follow-up of 1715 snps from the wellcome trust case control consortium genome-wide association study in type Ι diabetes families. Genes Immun. 2009, 10, S85–S94, doi:10.1038/gene.2009.97.
[26]  Johnson, K.; Wong, R.; Barriga, K.J.; Klingensmith, G.; Ziegler, A.G.; Rewers, M.J.; Steck, A.K. Rs11203203 is associated with type 1 diabetes risk in population pre-screened for high-risk hla-dr,dq genotypes. Pediatr. Diabetes 2012, 13, 611–615, doi:10.1111/j.1399-5448.2012.00888.x.
[27]  Manolio, T.A.; Rodriguez, L.L.; Brooks, L.; Abecasis, G.; Ballinger, D.; Daly, M.; Donnelly, P.; Faraone, S.V.; Frazer, K.; Gabriel, S.; et al. New models of collaboration in genome-wide association studies: The genetic association information network. Nat. Genet. 2007, 39, 1045–1051, doi:10.1038/ng2127.
[28]  Mueller, P.W.; Rogus, J.J.; Cleary, P.A.; Zhao, Y.; Smiles, A.M.; Steffes, M.W.; Bucksa, J.; Gibson, T.B.; Cordovado, S.K.; Krolewski, A.S.; et al. Genetics of kidneys in diabetes (gokind) study: A genetics collection available for identifying genetic susceptibility factors for diabetic nephropathy in type 1 diabetes. J. Am. Soc. Nephrol. JASN 2006, 17, 1782–1790, doi:10.1681/ASN.2005080822.
[29]  Cooper, J.D.; Smyth, D.J.; Smiles, A.M.; Plagnol, V.; Walker, N.M.; Allen, J.E.; Downes, K.; Barrett, J.C.; Healy, B.C.; Mychaleckyj, J.C.; et al. Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci. Nat. Genet. 2008, 40, 1399–1401, doi:10.1038/ng.249.
[30]  Espino-Paisan, L.; de La Calle, H.; Fernandez-Arquero, M.; Figueredo, M.A.; de La Concha, E.G.; Urcelay, E.; Santiago, J.L. Study of polymorphisms in 4q27, 10p15, and 22q13 regions in autoantibodies stratified type 1 diabetes patients. Autoimmunity 2011, 44, 624–630, doi:10.3109/08916934.2011.592515.
[31]  Barrett, J.C.; Clayton, D.G.; Concannon, P.; Akolkar, B.; Cooper, J.D.; Erlich, H.A.; Julier, C.; Morahan, G.; Nerup, J.; Nierras, C.; et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat. Genet. 2009, 41, 703–707, doi:10.1038/ng.381.
[32]  Cooper, J.D.; Walker, N.M.; Healy, B.C.; Smyth, D.J.; Downes, K.; Todd, J.A. Analysis of 55 autoimmune disease and type ii diabetes loci: Further confirmation of chromosomes 4q27, 12q13.2 and 12q24.13 as type i diabetes loci, and support for a new locus, 12q13.3-q14.1. Genes Immun. 2009, 10, S95–S120, doi:10.1038/gene.2009.98.
[33]  Fung, E.Y.; Smyth, D.J.; Howson, J.M.; Cooper, J.D.; Walker, N.M.; Stevens, H.; Wicker, L.S.; Todd, J.A. Analysis of 17 autoimmune disease-associated variants in type 1 diabetes identifies 6q23/tnfaip3 as a susceptibility locus. Genes Immun. 2009, 10, 188–191, doi:10.1038/gene.2008.99.
[34]  Smyth, D.J.; Plagnol, V.; Walker, N.M.; Cooper, J.D.; Downes, K.; Yang, J.H.; Howson, J.M.; Stevens, H.; McManus, R.; Wijmenga, C.; et al. Shared and distinct genetic variants in type 1 diabetes and celiac disease. N. Eng. J. Med. 2008, 359, 2767–2777, doi:10.1056/NEJMoa0807917.
[35]  Grant, S.F.; Qu, H.Q.; Bradfield, J.P.; Marchand, L.; Kim, C.E.; Glessner, J.T.; Grabs, R.; Taback, S.P.; Frackelton, E.C.; Eckert, A.W.; et al. Follow-up analysis of genome-wide association data identifies novel loci for type 1 diabetes. Diabetes 2009, 58, 290–295, doi:10.2337/db08-1022.
[36]  Qu, H.Q.; Bradfield, J.P.; Li, Q.; Kim, C.; Frackelton, E.; Grant, S.F.; Hakonarson, H.; Polychronakos, C. In silico replication of the genome-wide association results of the type 1 diabetes genetics consortium. Hum. Mol. Genet. 2010, 19, 2534–2538, doi:10.1093/hmg/ddq133.
[37]  Cooper, J.D.; Howson, J.M.; Smyth, D.; Walker, N.M.; Stevens, H.; Yang, J.H.; She, J.X.; Eisenbarth, G.S.; Rewers, M.; Todd, J.A.; et al. Confirmation of novel type 1 diabetes risk loci in families. Diabetologia 2012, 55, 996–1000, doi:10.1007/s00125-012-2450-3.
[38]  Bradfield, J.P.; Qu, H.Q.; Wang, K.; Zhang, H.; Sleiman, P.M.; Kim, C.E.; Mentch, F.D.; Qiu, H.; Glessner, J.T.; Thomas, K.A.; et al. A genome-wide meta-analysis of six type 1 diabetes cohorts identifies multiple associated loci. PLoS Genet. 2011, 7, e1002293, doi:10.1371/journal.pgen.1002293.
[39]  Awata, T.; Kawasaki, E.; Tanaka, S.; Ikegami, H.; Maruyama, T.; Shimada, A.; Nakanishi, K.; Kobayashi, T.; Iizuka, H.; Uga, M.; et al. Association of type 1 diabetes with two loci on 12q13 and 16p13 and the influence coexisting thyroid autoimmunity in japanese. J. Clin. Endocrinol. Metab. 2009, 94, 231–235.
[40]  Zoledziewska, M.; Costa, G.; Pitzalis, M.; Cocco, E.; Melis, C.; Moi, L.; Zavattari, P.; Murru, R.; Lampis, R.; Morelli, L.; et al. Variation within the clec16a gene shows consistent disease association with both multiple sclerosis and type 1 diabetes in sardinia. Genes Immun. 2009, 10, 15–17, doi:10.1038/gene.2008.84.
[41]  Wu, X.; Zhu, X.; Wang, X.; Ma, J.; Zhu, S.; Li, J.; Liu, Y. Intron polymorphism in the kiaa0350 gene is reproducibly associated with susceptibility to type 1 diabetes (t1d) in the han chinese population. Clin. Endocrinol. 2009, 71, 46–49, doi:10.1111/j.1365-2265.2008.03437.x.
[42]  Wallace, C.; Smyth, D.J.; Maisuria-Armer, M.; Walker, N.M.; Todd, J.A.; Clayton, D.G. The imprinted dlk1-meg3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes. Nat. Genet. 2010, 42, 68–71, doi:10.1038/ng.493.
[43]  Wang, K.; Baldassano, R.; Zhang, H.; Qu, H.Q.; Imielinski, M.; Kugathasan, S.; Annese, V.; Dubinsky, M.; Rotter, J.I.; Russell, R.K.; et al. Comparative genetic analysis of inflammatory bowel disease and type 1 diabetes implicates multiple loci with opposite effects. Hum. Mol. Genet. 2010, 19, 2059–2067, doi:10.1093/hmg/ddq078.
[44]  Reddy, M.V.; Wang, H.; Liu, S.; Bode, B.; Reed, J.C.; Steed, R.D.; Anderson, S.W.; Steed, L.; Hopkins, D.; She, J.X. Association between type 1 diabetes and gwas snps in the southeast us caucasian population. Genes Immun. 2011, 12, 208–212, doi:10.1038/gene.2010.70.
[45]  Asad, S.; Nikamo, P.; Gyllenberg, A.; Bennet, H.; Hansson, O.; Wierup, N.; Carlsson, A.; Forsander, G.; Ivarsson, S.A.; Larsson, H.; et al. Htr1a a novel type 1 diabetes susceptibility gene on chromosome 5p13-q13. PLoS One 2012, 7, e35439.
[46]  Huang, J.; Ellinghaus, D.; Franke, A.; Howie, B.; Li, Y. 1,000 genomes-based imputation identifies novel and refined associations for the wellcome trust case control consortium phase 1 data. Eur. J. Hum. Genet. 2012, 20, 801–805, doi:10.1038/ejhg.2012.3.
[47]  Litman, G.W.; Cannon, J.P.; Dishaw, L.J. Reconstructing immune phylogeny: New perspectives. Nat. Rev. Immunol. 2005, 5, 866–879, doi:10.1038/nri1712.
[48]  Storling, J.; Brorsson, C.A. Candidate genes expressed in human islets and their role in the pathogenesis of type 1 diabetes. Curr. Diab. Rep. 2013. in press.
[49]  Van Belle, T.L.; Coppieters, K.T.; von Herrath, M.G. Type 1 diabetes: Etiology, immunology, and therapeutic strategies. Physiol. Rev. 2011, 91, 79–118, doi:10.1152/physrev.00003.2010.
[50]  Peakman, M. Immunological pathways to β-cell damage in type 1 diabetes. Diabet. Med. 2013, 30, 147–154, doi:10.1111/dme.12085.
[51]  Diana, J.; Gahzarian, L.; Simoni, Y.; Lehuen, A. Innate immunity in type 1 diabetes. Discov. Med. 2011, 11, 513–520.
[52]  Robinson, M.J.; Sancho, D.; Slack, E.C.; LeibundGut-Landmann, S.; Reis e Sousa, C. Myeloid c-type lectins in innate immunity. Nat. Immunol. 2006, 7, 1258–1265, doi:10.1038/ni1417.
[53]  Cambi, A.; Figdor, C.G. Dual function of c-type lectin-like receptors in the immune system. Curr. Opin. Cell Biol. 2003, 15, 539–546, doi:10.1016/j.ceb.2003.08.004.
[54]  Martinez, A.; Perdigones, N.; Cenit, M.C.; Espino, L.; Varade, J.; Lamas, J.R.; Santiago, J.L.; Fernandez-Arquero, M.; de la Calle, H.; Arroyo, R.; et al. Chromosomal region 16p13: Further evidence of increased predisposition to immune diseases. Ann. Rheum. Dis. 2010, 69, 309–311, doi:10.1136/ard.2008.098376.
[55]  Sang, Y.; Zong, W.; Yan, J.; Liu, M. The correlation between the clec16a gene and genetic susceptibility to type 1 diabetes in chinese children. Int. J. Endocrinol. 2012, 2012, Article ID 245384.
[56]  Yamashita, H.; Awata, T.; Kawasaki, E.; Ikegami, H.; Tanaka, S.; Maruyama, T.; Shimada, A.; Nakanishi, K.; Takahashi, K.; Kobayashi, T.; et al. Analysis of the hla and non-hla susceptibility loci in japanese type 1 diabetes. Diabet. Metab. Res. Rev. 2011, 27, 844–848.
[57]  Howson, J.M.; Rosinger, S.; Smyth, D.J.; Boehm, B.O.; Todd, J.A. Genetic analysis of adult-onset autoimmune diabetes. Diabetes 2011, 60, 2645–2653, doi:10.2337/db11-0364.
[58]  Nischwitz, S.; Cepok, S.; Kroner, A.; Wolf, C.; Knop, M.; Muller-Sarnowski, F.; Pfister, H.; Rieckmann, P.; Hemmer, B.; Ising, M.; et al. More clec16a gene variants associated with multiple sclerosis. Acta Neurol. Scand. 2011, 123, 400–406, doi:10.1111/j.1600-0404.2010.01421.x.
[59]  Zuvich, R.L.; Bush, W.S.; McCauley, J.L.; Beecham, A.H.; de Jager, P.L.; Ivinson, A.J.; Compston, A.; Hafler, D.A.; Hauser, S.L.; Sawcer, S.J.; et al. Interrogating the complex role of chromosome 16p13.13 in multiple sclerosis susceptibility: Independent genetic signals in the ciita-clec16a-socs1 gene complex. Hum. Mol. Genet. 2011, 20, 3517–3524, doi:10.1093/hmg/ddr250.
[60]  Skinningsrud, B.; Husebye, E.S.; Pearce, S.H.; McDonald, D.O.; Brandal, K.; Wolff, A.B.; Lovas, K.; Egeland, T.; Undlien, D.E. Polymorphisms in clec16a and ciita at 16p13 are associated with primary adrenal insufficiency. J. Clin. Endocrinol. Metab. 2008, 93, 3310–3317.
[61]  Gateva, V.; Sandling, J.K.; Hom, G.; Taylor, K.E.; Chung, S.A.; Sun, X.; Ortmann, W.; Kosoy, R.; Ferreira, R.C.; Nordmark, G.; et al. A large-scale replication study identifies tnip1, prdm1, jazf1, uhrf1bp1 and il10 as risk loci for systemic lupus erythematosus. Nat. Genet. 2009, 41, 1228–1233, doi:10.1038/ng.468.
[62]  Zhang, Z.; Cheng, Y.; Zhou, X.; Li, Y.; Gao, J.; Han, J.; Quan, C.; He, S.; Lv, Y.; Hu, D.; et al. Polymorphisms at 16p13 are associated with systemic lupus erythematosus in the chinese population. J. Med. Genet. 2011, 48, 69–72, doi:10.1136/jmg.2010.077859.
[63]  Dubois, P.C.; Trynka, G.; Franke, L.; Hunt, K.A.; Romanos, J.; Curtotti, A.; Zhernakova, A.; Heap, G.A.; Adany, R.; Aromaa, A.; et al. Multiple common variants for celiac disease influencing immune gene expression. Nat. Genet. 2010, 42, 295–302, doi:10.1038/ng.543.
[64]  Marquez, A.; Varade, J.; Robledo, G.; Martinez, A.; Mendoza, J.L.; Taxonera, C.; Fernandez-Arquero, M.; Diaz-Rubio, M.; Gomez-Garcia, M.; Lopez-Nevot, M.A.; et al. Specific association of a clec16a/kiaa0350 polymorphism with nod2/card15(-) crohn’s disease patients. Eur. J. Hum. Genet. 2009, 17, 1304–1308, doi:10.1038/ejhg.2009.50.
[65]  Jagielska, D.; Redler, S.; Brockschmidt, F.F.; Herold, C.; Pasternack, S.M.; Garcia Bartels, N.; Hanneken, S.; Eigelshoven, S.; Refke, M.; Barth, S.; et al. Follow-up study of the first genome-wide association scan in alopecia areata: Il13 and kiaa0350 as susceptibility loci supported with genome-wide significance. J. Invest. Dermatol. 2012, 132, 2192–2197, doi:10.1038/jid.2012.129.
[66]  Skinningsrud, B.; Lie, B.A.; Husebye, E.S.; Kvien, T.K.; Forre, O.; Flato, B.; Stormyr, A.; Joner, G.; Njolstad, P.R.; Egeland, T.; et al. A clec16a variant confers risk for juvenile idiopathic arthritis and anti-cyclic citrullinated peptide antibody negative rheumatoid arthritis. Ann. Rheum. Dis. 2010, 69, 1471–1474, doi:10.1136/ard.2009.114934.
[67]  Hirschfield, G.M.; Xie, G.; Lu, E.; Sun, Y.; Juran, B.D.; Chellappa, V.; Coltescu, C.; Mason, A.L.; Milkiewicz, P.; Myers, R.P; et al. Association of primary biliary cirrhosis with variants in the clec16a, socs1, spib and siae immunomodulatory genes. Genes Immun. 2012, 13, 328–335, doi:10.1038/gene.2011.89.
[68]  Mells, G.F.; Floyd, J.A.; Morley, K.I.; Cordell, H.J.; Franklin, C.S.; Shin, S.Y.; Heneghan, M.A.; Neuberger, J.M.; Donaldson, P.T.; Day, D.B.; et al. Genome-wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis. Nat. Genet. 2011, 43, 329–332, doi:10.1038/ng.789.
[69]  Davison, L.J.; Wallace, C.; Cooper, J.D.; Cope, N.F.; Wilson, N.K.; Smyth, D.J.; Howson, J.M.; Saleh, N.; Al-Jeffery, A.; Angus, K.L.; et al. Long-range DNA looping and gene expression analyses identify dexi as an autoimmune disease candidate gene. Hum. Mol. Genet. 2012, 21, 322–333, doi:10.1093/hmg/ddr468.
[70]  Kim, S.; Wairkar, Y.P.; Daniels, R.W.; DiAntonio, A. The novel endosomal membrane protein ema interacts with the class c vps-hops complex to promote endosomal maturation. J. Cell Biol. 2010, 188, 717–734, doi:10.1083/jcb.200911126.
[71]  Kim, S.; Naylor, S.A.; DiAntonio, A. Drosophila golgi membrane protein ema promotes autophagosomal growth and function. Proc. Natl. Acad. Sci. USA 2012, 109, E1072–E1081, doi:10.1073/pnas.1120320109.
[72]  Wu, X.; Li, J.; Chen, C.; Yan, Y.; Jiang, S.; Shao, B.; Xu, J.; Kang, L.; Huang, Y.; Zhu, L.; et al. Involvement of clec16a in activation of astrocytes after lps treated. Neurochem. Res. 2012, 37, 5–14, doi:10.1007/s11064-011-0581-4.
[73]  Ooshio, T.; Irie, K.; Morimoto, K.; Fukuhara, A.; Imai, T.; Takai, Y. Involvement of lmo7 in the association of two cell-cell adhesion molecules, nectin and e-cadherin, through afadin and alpha-actinin in epithelial cells. J. Biol. Chem. 2004, 279, 31365–31373.
[74]  Yamada, A.; Irie, K.; Fukuhara, A.; Ooshio, T.; Takai, Y. Requirement of the actin cytoskeleton for the association of nectins with other cell adhesion molecules at adherens and tight junctions in mdck cells. Genes Cells 2004, 9, 843–855, doi:10.1111/j.1365-2443.2004.00768.x.
[75]  Furuya, M.; Tsuji, N.; Endoh, T.; Moriai, R.; Kobayashi, D.; Yagihashi, A.; Watanabe, N. A novel gene containing pdz and lim domains, pcd1, is overexpressed in human colorectal cancer. Anticancer Res. 2002, 22, 4183–4186.
[76]  Kang, S.; Xu, H.; Duan, X.; Liu, J.J.; He, Z.; Yu, F.; Zhou, S.; Meng, X.Q.; Cao, M.; Kennedy, G.C. Pcd1, a novel gene containing pdz and lim domains, is overexpressed in several human cancers. Cancer Res. 2000, 60, 5296–5302.
[77]  Lindvall, J.M.; Blomberg, K.E.; Wennborg, A.; Smith, C.I. Differential expression and molecular characterisation of lmo7, myo1e, sash1, and mcoln2 genes in btk-defective b-cells. Cell. Immunol. 2005, 235, 46–55, doi:10.1016/j.cellimm.2005.07.001.
[78]  Semenova, E.; Wang, X.; Jablonski, M.M.; Levorse, J.; Tilghman, S.M. An engineered 800 kilobase deletion of uchl3 and lmo7 on mouse chromosome 14 causes defects in viability, postnatal growth and degeneration of muscle and retina. Hum. Mol. Genet. 2003, 12, 1301–1312, doi:10.1093/hmg/ddg140.
[79]  Perou, C.M.; Sorlie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; et al. Molecular portraits of human breast tumours. Nature 2000, 406, 747–752, doi:10.1038/35021093.
[80]  Nakamura, H.; Mukai, M.; Komatsu, K.; Tanaka-Okamoto, M.; Itoh, Y.; Ishizaki, H.; Tatsuta, M.; Inoue, M.; Miyoshi, J. Transforming growth factor-beta1 induces lmo7 while enhancing the invasiveness of rat ascites hepatoma cells. Cancer Lett. 2005, 220, 95–99, doi:10.1016/j.canlet.2004.07.023.
[81]  Kutlu, B.; Burdick, D.; Baxter, D.; Rasschaert, J.; Flamez, D.; Eizirik, D.L.; Welsh, N.; Goodman, N.; Hood, L. Detailed transcriptome atlas of the pancreatic beta cell. BMC Med. Genomics 2009, 2, 3, doi:10.1186/1755-8794-2-3.
[82]  Patel, S.B.; Salen, G.; Hidaka, H.; Kwiterovich, P.O.; Stalenhoef, A.F.; Miettinen, T.A.; Grundy, S.M.; Lee, M.H.; Rubenstein, J.S.; Polymeropoulos, M.H.; et al. Mapping a gene involved in regulating dietary cholesterol absorption. The sitosterolemia locus is found at chromosome 2p21. J. Clin. Invest. 1998, 102, 1041–1044, doi:10.1172/JCI3963.
[83]  Shulenin, S.; Schriml, L.M.; Remaley, A.T.; Fojo, S.; Brewer, B.; Allikmets, R.; Dean, M. An atp-binding cassette gene (abcg5) from the abcg (white) gene subfamily maps to human chromosome 2p21 in the region of the sitosterolemia locus. Cytogenet. Cell Genet. 2001, 92, 204–208, doi:10.1159/000056903.
[84]  Zumsteg, U.; Muller, P.Y.; Miserez, A.R. Alstrom syndrome: Confirmation of linkage to chromosome 2p12-13 and phenotypic heterogeneity in three affected sibs. J. Med. Genet. 2000, 37, E8, doi:10.1136/jmg.37.7.e8.
[85]  Onate, S.A.; Tsai, S.Y.; Tsai, M.J.; O’Malley, B.W. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 1995, 270, 1354–1357.
[86]  Torchia, J.; Rose, D.W.; Inostroza, J.; Kamei, Y.; Westin, S.; Glass, C.K.; Rosenfeld, M.G. The transcriptional co-activator p/cip binds cbp and mediates nuclear-receptor function. Nature 1997, 387, 677–684, doi:10.1038/42652.
[87]  Okada, M.; Cheeseman, I.M.; Hori, T.; Okawa, K.; McLeod, I.X.; Yates, J.R., 3rd; Desai, A.; Fukagawa, T. The cenp-h-i complex is required for the efficient incorporation of newly synthesized cenp-a into centromeres. Nat. Cell Biol. 2006, 8, 446–457, doi:10.1038/ncb1396.
[88]  Ludwig, M.G.; Seuwen, K. Characterization of the human adenylyl cyclase gene family: Cdna, gene structure, and tissue distribution of the nine isoforms. J. Recept. Signal Transduct. Res. 2002, 22, 79–110, doi:10.1081/RRS-120014589.
[89]  Wong, S.T.; Trinh, K.; Hacker, B.; Chan, G.C.; Lowe, G.; Gaggar, A.; Xia, Z.; Gold, G.H.; Storm, D.R. Disruption of the type iii adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice. Neuron 2000, 27, 487–497, doi:10.1016/S0896-6273(00)00060-X.
[90]  Nepomuceno-Silva, J.L.; de Melo, L.D.; Mendonca, S.M.; Paixao, J.C.; Lopes, U.G. Rjls: A new family of ras-related gtp-binding proteins. Gene 2004, 327, 221–232, doi:10.1016/j.gene.2003.11.010.
[91]  Hung, C.N.; Poon, W.T.; Lee, C.Y.; Law, C.Y.; Chan, A.Y. A case of early-onset obesity, hypocortisolism, and skin pigmentation problem due to a novel homozygous mutation in the proopiomelanocortin (pomc) gene in an indian boy. J. Pediatr. Endocrinol. Metab. 2012, 25, 175–179.
[92]  Krude, H.; Biebermann, H.; Luck, W.; Horn, R.; Brabant, G.; Gruters, A. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by pomc mutations in humans. Nat. Genet. 1998, 19, 155–157, doi:10.1038/509.
[93]  Martin, R.J.; Savage, D.A.; Carson, D.J.; McKnight, A.J.; Maxwell, A.P.; Patterson, C.C. Association analysis of proopiomelanocortin (pomc) haplotypes in type 1 diabetes in a uk population. Diabetes Metab. 2011, 37, 298–304, doi:10.1016/j.diabet.2010.11.021.
[94]  Yanagisawa, Y.; Ito, E.; Yuasa, Y.; Maruyama, K. The human DNA methyltransferases dnmt3a and dnmt3b have two types of promoters with different cpg contents. Biochim. Biophys. Acta 2002, 1577, 457–465, doi:10.1016/S0167-4781(02)00482-7.
[95]  Yoo, A.S.; Staahl, B.T.; Chen, L.; Crabtree, G.R. Microrna-mediated switching of chromatin-remodelling complexes in neural development. Nature 2009, 460, 642–646.
[96]  Dontje, W.; Schotte, R.; Cupedo, T.; Nagasawa, M.; Scheeren, F.; Gimeno, R.; Spits, H.; Blom, B. Delta-like1-induced notch1 signaling regulates the human plasmacytoid dendritic cell versus t-cell lineage decision through control of gata-3 and spi-b. Blood 2006, 107, 2446–2452, doi:10.1182/blood-2005-05-2090.
[97]  Santos, M.A.; Sarmento, L.M.; Rebelo, M.; Doce, A.A.; Maillard, I.; Dumortier, A.; Neves, H.; Radtke, F.; Pear, W.S.; Parreira, L.; et al. Notch1 engagement by delta-like-1 promotes differentiation of b lymphocytes to antibody-secreting cells. Proc. Natl. Acad. Sci. USA 2007, 104, 15454–15459, doi:10.1073/pnas.0702891104.
[98]  Su, Y.; Buchler, P.; Gazdhar, A.; Giese, N.; Reber, H.A.; Hines, O.J.; Giese, T.; Buchler, M.W.; Friess, H. Pancreatic regeneration in chronic pancreatitis requires activation of the notch signaling pathway. J. Gastrointest. Surg. 2006, 10, 1230–1241, doi:10.1016/j.gassur.2006.08.017.
[99]  Li, D.; Kang, Q.; Wang, D.M. Constitutive coactivator of peroxisome proliferator-activated receptor (ppargamma), a novel coactivator of ppargamma that promotes adipogenesis. Mol. Endocrinol. 2007, 21, 2320–2333, doi:10.1210/me.2006-0520.
[100]  Trachtulec, Z.; Hamvas, R.M.; Forejt, J.; Lehrach, H.R.; Vincek, V.; Klein, J. Linkage of tata-binding protein and proteasome subunit c5 genes in mice and humans reveals synteny conserved between mammals and invertebrates. Genomics 1997, 44, 1–7, doi:10.1006/geno.1997.4839.
[101]  Keutgens, A.; Zhang, X.; Shostak, K.; Robert, I.; Olivier, S.; Vanderplasschen, A.; Chapelle, J.P.; Viatour, P.; Merville, M.P.; Bex, F.; et al. Bcl-3 degradation involves its polyubiquitination through a fbw7-independent pathway and its binding to the proteasome subunit psmb1. J. Biol. Chem. 2010, 285, 25831–25840, doi:10.1074/jbc.M110.112128.
[102]  Agata, Y.; Kawasaki, A.; Nishimura, H.; Ishida, Y.; Tsubata, T.; Yagita, H.; Honjo, T. Expression of the pd-1 antigen on the surface of stimulated mouse t and b lymphocytes. Int. Immunol. 1996, 8, 765–772, doi:10.1093/intimm/8.5.765.
[103]  Cohen, D.R.; Ferreira, P.C.; Gentz, R.; Franza, B.R., Jr.; Curran, T. The product of a fos-related gene, fra-1, binds cooperatively to the ap-1 site with jun: Transcription factor ap-1 is comprised of multiple protein complexs. Genes Dev. 1989, 3, 173–184, doi:10.1101/gad.3.2.173.
[104]  Gingras, H.; Cases, O.; Krasilnikova, M.; Berube, G.; Nepveu, A. Biochemical characterization of the mammalian cux2 protein. Gene 2005, 344, 273–285, doi:10.1016/j.gene.2004.11.008.
[105]  Iulianella, A.; Sharma, M.; Durnin, M.; Vanden Heuvel, G.B.; Trainor, P.A. Cux2 (cutl2) integrates neural progenitor development with cell-cycle progression during spinal cord neurogenesis. Development 2008, 135, 729–741, doi:10.1242/dev.013276.
[106]  Iwata, I.; Nagafuchi, S.; Nakashima, H.; Kondo, S.; Koga, T.; Yokogawa, Y.; Akashi, T.; Shibuya, T.; Umeno, Y.; Okeda, T.; et al. Association of polymorphism in the neurod/beta2 gene with type 1 diabetes in the japanese. Diabetes 1999, 48, 416–419, doi:10.2337/diabetes.48.2.416.
[107]  Kavvoura, F.K.; Ioannidis, J.P. Ala45thr polymorphism of the neurod1 gene and diabetes susceptibility: A meta-analysis. Hum. Genet. 2005, 116, 192–199, doi:10.1007/s00439-004-1224-5.
[108]  Nerup, J.; Pociot, F. A genomewide scan for type 1-diabetes susceptibility in scandinavian families: Identification of new loci with evidence of interactions. Am. J. Hum. Genet. 2001, 69, 1301–1313, doi:10.1086/324341.
[109]  Barnes, N.M.; Sharp, T. A review of central 5-ht receptors and their function. Neuropharmacology 1999, 38, 1083–1152, doi:10.1016/S0028-3908(99)00010-6.
[110]  Lesurtel, M.; Soll, C.; Graf, R.; Clavien, P.A. Role of serotonin in the hepato-gastrointestinal tract: An old molecule for new perspectives. Cell. Mol. life Sci. 2008, 65, 940–952, doi:10.1007/s00018-007-7377-3.
[111]  Sundler, F.; Hakanson, R.; Loren, I.; Lundquist, I. Amine storage and function in peptide hormone-producing cells. Invest. Cell Pathol. 1980, 3, 87–103.
[112]  Zawalich, W.S.; Tesz, G.J.; Zawalich, K.C. Effects of prior 5-hydroxytryptamine exposure on rat islet insulin secretory and phospholipase c responses. Endocrine 2004, 23, 11–16, doi:10.1385/ENDO:23:1:11.
[113]  Coulie, B.; Tack, J.; Bouillon, R.; Peeters, T.; Janssens, J. 5-hydroxytryptamine-1 receptor activation inhibits endocrine pancreatic secretion in humans. Am. J. Physiol. 1998, 274, E317–E320.
[114]  Mohanan, V.V.; Khan, R.; Paulose, C.S. Hypothalamic 5-ht functional regulation through 5-ht1a and 5-ht2c receptors during pancreatic regeneration. Life Sci. 2006, 78, 1603–1609, doi:10.1016/j.lfs.2005.07.027.
[115]  Aune, T.M.; McGrath, K.M.; Sarr, T.; Bombara, M.P.; Kelley, K.A. Expression of 5ht1a receptors on activated human t cells. Regulation of cyclic amp levels and t cell proliferation by 5-hydroxytryptamine. J. Immunol. 1993, 151, 1175–1183.
[116]  Wei, Z.; Wang, K.; Qu, H.Q.; Zhang, H.; Bradfield, J.; Kim, C.; Frackleton, E.; Hou, C.; Glessner, J.T.; Chiavacci, R.; et al. From disease association to risk assessment: An optimistic view from genome-wide association studies on type 1 diabetes. PLoS Genet. 2009, 5, e1000678, doi:10.1371/journal.pgen.1000678.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133