全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Genes  2013 

Polymorphisms in Fatty Acid Desaturase (FADS) Gene Cluster: Effects on Glycemic Controls Following an Omega-3 Polyunsaturated Fatty Acids (PUFA) Supplementation

DOI: 10.3390/genes4030485

Keywords: metabolic pathways, genotype, FADS gene cluster, polyunsaturated fatty acid omega-3, insulin insensitivity, glucose metabolism, homeostasis model assessment

Full-Text   Cite this paper   Add to My Lib

Abstract:

Changes in desaturase activity are associated with insulin sensitivity and may be associated with type 2 diabetes mellitus (T2DM). Polymorphisms (SNPs) in the fatty acid desaturase ( FADS) gene cluster have been associated with the homeostasis model assessment of insulin sensitivity (HOMA-IS) and serum fatty acid composition. Objective: To investigate whether common genetic variations in the FADS gene cluster influence fasting glucose (FG) and fasting insulin (FI) responses following a 6-week n-3 polyunsaturated fatty acids (PUFA) supplementation. Methods: 210 subjects completed a 2-week run-in period followed by a 6-week supplementation with 5 g/d of fish oil (providing 1.9 g–2.2 g of EPA + 1.1 g of DHA). Genotyping of 18 SNPs of the FADS gene cluster covering 90% of all common genetic variations (minor allele frequency ≥ 0.03) was performed. Results: Carriers of the minor allele for rs482548 ( FADS2) had increased plasma FG levels after the n-3 PUFA supplementation in a model adjusted for FG levels at baseline, age, sex, and BMI. A significant genotype*supplementation interaction effect on FG levels was observed for rs482548 ( p = 0.008). For FI levels, a genotype effect was observed with one SNP (rs174456). For HOMA-IS, several genotype*supplementation interaction effects were observed for rs7394871, rs174602, rs174570, rs7482316 and rs482548 ( p = 0.03, p = 0.01, p = 0.03, p = 0.05 and p = 0.07; respectively). Conclusion: Results suggest that SNPs in the FADS gene cluster may modulate plasma FG, FI and HOMA-IS levels in response to n-3 PUFA supplementation.

References

[1]  National Diabetes Fact Sheet. Available online: http://www.cdc.gov/diabetes/pubs/factsheet11.htm/ (accessed on 7 May 2013).
[2]  Wilson, J.F. In the clinic. Type 2 diabetes. Ann. Intern. Med. 2007, 146, ITC1-1, doi:10.7326/0003-4819-146-1-200701020-01001.
[3]  Harris, W.S.; Bulchandani, D. Why do omega-3 fatty acids lower serum triglycerides? Curr. Opin. Lipidol. 2006, 17, 387–393, doi:10.1097/01.mol.0000236363.63840.16.
[4]  McEwen, B.; Morel-Kopp, M.C.; Tofler, G.; Ward, C. Effect of omega-3 fish oil on cardiovascular risk in diabetes. Diabetes Educ. 2010, 36, 565–584, doi:10.1177/0145721710372675.
[5]  Thifault, E.; Cormier, H.; Bouchard-Mercier, A.; Rudkowska, I.; Paradis, A.M.; Garneau, V.; Ouellette, C.; Lemieux, S.; Couture, P.; Vohl, M.C. Effects of age, sex, body mass index and APOE genotype on cardiovascular biomarker response to an n-3 polyunsaturated fatty acid supplementation. J. Nutrigenet. Nutrigenomics 2013, 6, 73–82.
[6]  Montori, V.M.; Farmer, A.; Wollan, P.C.; Dinneen, S.F. Fish oil supplementation in type 2 diabetes: A quantitative systematic review. Diabetes Care 2000, 23, 1407–1415, doi:10.2337/diacare.23.9.1407.
[7]  Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419, doi:10.1007/BF00280883.
[8]  Kim, O.Y.; Lim, H.H.; Yang, L.I.; Chae, J.S.; Lee, J.H. Fatty acid desaturase (fads) gene polymorphisms and insulin resistance in association with serum phospholipid polyunsaturated fatty acid composition in healthy korean men: Cross-sectional study. Nutr. Metab. (Lond.) 2011, 8, 24, doi:10.1186/1743-7075-8-24.
[9]  Martinelli, N.; Girelli, D.; Malerba, G.; Guarini, P.; Illig, T.; Trabetti, E.; Sandri, M.; Friso, S.; Pizzolo, F.; Schaeffer, L.; et al. Fads genotypes and desaturase activity estimated by the ratio of arachidonic acid to linoleic acid are associated with inflammation and coronary artery disease. Am. J. Clin. Nutr. 2008, 88, 941–949.
[10]  Warensjo, E.; Rosell, M.; Hellenius, M.L.; Vessby, B.; de Faire, U.; Riserus, U. Associations between estimated fatty acid desaturase activities in serum lipids and adipose tissue in humans: Links to obesity and insulin resistance. Lipids Health Dis. 2009, 8, 37, doi:10.1186/1476-511X-8-37.
[11]  Kroger, J.; Zietemann, V.; Enzenbach, C.; Weikert, C.; Jansen, E.H.; Doring, F.; Joost, H.G.; Boeing, H.; Schulze, M.B. Erythrocyte membrane phospholipid fatty acids, desaturase activity, and dietary fatty acids in relation to risk of type 2 diabetes in the european prospective investigation into cancer and nutrition (epic)-potsdam study. Am. J. Clin. Nutr. 2011, 93, 127–142, doi:10.3945/ajcn.110.005447.
[12]  Hodge, A.M.; English, D.R.; O’Dea, K.; Sinclair, A.J.; Makrides, M.; Gibson, R.A.; Giles, G.G. Plasma phospholipid and dietary fatty acids as predictors of type 2 diabetes: Interpreting the role of linoleic acid. Am. J. Clin. Nutr. 2007, 86, 189–197.
[13]  Cormier, H.; Rudkowska, I.; Paradis, A.M.; Thifault, E.; Garneau, V.; Lemieux, S.; Couture, P.; Vohl, M.C. Association between polymorphisms in the fatty acid desaturase gene cluster and the plasma triacylglycerol response to an n-3 pufa supplementation. Nutrients 2012, 4, 1026–1041, doi:10.3390/nu4081026.
[14]  Vohl, M.C. Genes, Omega-3 Fatty Acids and Cardiovascular Disease Risk Factors (fas); Institute of Nutrition and Functional Foods (INAF), Laval University: Quebec City, QC, Canada, 2011.
[15]  Eating Well with Canada’s Food Guide; Health Canada: Ottawa, ON, Canada, 2007.
[16]  Callaway, C.W. Cwbc Standardization of Anthropometric Measurements. The Airlie (va) Consensus Conference; Human Kinetics Publishers: Champaign, IL, USA, 1988.
[17]  Genest, J.; McPherson, R.; Frohlich, J.; Anderson, T.; Campbell, N.; Carpentier, A.; Couture, P.; Dufour, R.; Fodor, G.; Francis, G.A.; et al. 2009 canadian cardiovascular society/canadian guidelines for the diagnosis and treatment of dyslipidemia and prevention of cardiovascular disease in the adult—2009 recommendations. Can. J. Cardiol. 2009, 25, 567–579, doi:10.1016/S0828-282X(09)70715-9.
[18]  Desbuquois, B.; Aurbach, G.D. Use of polyethylene glycol to separate free and antibody-bound peptide hormones in radioimmunoassays. J. Clin. Endocrinol. Metab. 1971, 33, 732–738, doi:10.1210/jcem-33-5-732.
[19]  Richterich, R.; Kuffer, H.; Lorenz, E.; Colombo, J.P. The determination of glucose in plasma and serum (hexokinase-glucose-6-phosphate dehydrogenase method) with the greiner electronic selective analyzer gsa ii (author’s transl). Z. Klin. Chem. Klin. Biochem. 1974, 12, 5–13.
[20]  Pirro, M.; Bergeron, J.; Dagenais, G.R.; Bernard, P.M.; Cantin, B.; Despres, J.P.; Lamarche, B. Age and duration of follow-up as modulators of the risk for ischemic heart disease associated with high plasma c-reactive protein levels in men. Arch. Intern. Med. 2001, 161, 2474–2480, doi:10.1001/archinte.161.20.2474.
[21]  McNamara, J.R.; Schaefer, E.J. Automated enzymatic standardized lipid analyses for plasma and lipoprotein fractions. Clin. Chim. Acta Int. J. Clin. Chem. 1987, 166, 1–8, doi:10.1016/0009-8981(87)90188-4.
[22]  Albers, J.J.; Warnick, G.R.; Wiebe, D.; King, P.; Steiner, P.; Smith, L.; Breckenridge, C.; Chow, A.; Kuba, K.; Weidman, S.; et al. Multi-laboratory comparison of three heparin-mn2+ precipitation procedures for estimating cholesterol in high-density lipoprotein. Clin. Chem. 1978, 24, 853–856.
[23]  Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502.
[24]  Laurell, C.B. Quantitative estimation of proteins by electrophoresis in agarose gel containing antibodies. Anal. Biochem. 1966, 15, 45–52, doi:10.1016/0003-2697(66)90246-6.
[25]  Cartegni, L.; Wang, J.; Zhu, Z.; Zhang, M.Q.; Krainer, A.R. Esefinder: A web resource to identify exonic splicing enhancers. Nucleic Acids Res. 2003, 31, 3568–3571, doi:10.1093/nar/gkg616.
[26]  Henkin, L.; Bergman, R.N.; Bowden, D.W.; Ellsworth, D.L.; Haffner, S.M.; Langefeld, C.D.; Mitchell, B.D.; Norris, J.M.; Rewers, M.; Saad, M.F.; et al. Genetic epidemiology of insulin resistance and visceral adiposity. The iras family study design and methods. Ann. Epidemiol. 2003, 13, 211–217.
[27]  Connor, W.E.; Prince, M.J.; Ullmann, D.; Riddle, M.; Hatcher, L.; Smith, F.E.; Wilson, D. The hypotriglyceridemic effect of fish oil in adult-onset diabetes without adverse glucose control. Ann. N. Y. Acad. Sci. 1993, 683, 337–340, doi:10.1111/j.1749-6632.1993.tb35725.x.
[28]  Simopoulos, A. Fatty acid composition of the skeletal muscle membrane phospholipids, insulin resistance and obesity. Nutr. Today 1994, 2, 12–16, doi:10.1097/00017285-199401000-00004.
[29]  Grunfeld, C.; Baird, K.L.; Kahn, C.R. Maintenance of 3t3-l1 cells in culture media containing saturated fatty acids decreases insulin binding and insulin action. Biochem. Biophys. Res. Commun. 1981, 103, 219–226, doi:10.1016/0006-291X(81)91682-X.
[30]  Ginsberg, B.H.; Jabour, J.; Spector, A.A. Effect of alterations in membrane lipid unsaturation on the properties of the insulin receptor of ehrlich ascites cells. Biochim. Biophys. Acta 1982, 690, 157–164, doi:10.1016/0005-2736(82)90318-2.
[31]  Riserus, U. Trans fatty acids and insulin resistance. Atheroscler. Suppl. 2006, 7, 37–39, doi:10.1016/j.atherosclerosissup.2006.04.008.
[32]  Das, U.N. Essential fatty acids: Biochemistry, physiology and pathology. Biotechnol. J. 2006, 1, 420–439, doi:10.1002/biot.200600012.
[33]  Simopoulos, A.P. Genetic variants in the metabolism of omega-6 and omega-3 fatty acids: Their role in the determination of nutritional requirements and chronic disease risk. Exp. Biol. Med. (Maywood) 2010, 235, 785–795, doi:10.1258/ebm.2010.009298.
[34]  Simopoulos, A.P. The omega-6/omega-3 fatty acid ratio, genetic variation, and cardiovascular disease. Asia Pac. J. Clin. Nutr. 2008, 17, 131–134.
[35]  Brenner, R.R. Hormonal modulation of delta6 and delta5 desaturases: Case of diabetes. Prostaglandins Leukot. Essent. Fatty Acids 2003, 68, 151–162, doi:10.1016/S0952-3278(02)00265-X.
[36]  Kroger, J.; Schulze, M.B. Recent insights into the relation of delta5 desaturase and delta6 desaturase activity to the development of type 2 diabetes. Curr. Opin. Lipidol. 2012, 23, 4–10, doi:10.1097/MOL.0b013e32834d2dc5.
[37]  Simopoulos, A.P. Evolutionary aspects of the dietary omega-6:Omega-3 fatty acid ratio: Medical implications. World Rev. Nutr. Diet. 2009, 100, 1–21, doi:10.1159/000235706.
[38]  Manning, A.K.; Hivert, M.F.; Scott, R.A.; Grimsby, J.L.; Bouatia-Naji, N.; Chen, H.; Rybin, D.; Liu, C.T.; Bielak, L.F.; Prokopenko, I.; et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat. Genet. 2012, 44, 659–669, doi:10.1038/ng.2274.
[39]  Ding, K.; Kullo, I.J. Geographic differences in allele frequencies of susceptibility snps for cardiovascular disease. BMC Med. Genet. 2011, 12, 55, doi:10.1186/1471-2350-12-55.
[40]  Park, M.H.; Kim, N.; Lee, J.Y.; Park, H.Y. Genetic loci associated with lipid concentrations and cardiovascular risk factors in the korean population. J. Med. Genet. 2011, 48, 10–15, doi:10.1136/jmg.2010.081000.
[41]  Zietemann, V.; Kroger, J.; Enzenbach, C.; Jansen, E.; Fritsche, A.; Weikert, C.; Boeing, H.; Schulze, M.B. Genetic variation of the fads1 fads2 gene cluster and n-6 pufa composition in erythrocyte membranes in the european prospective investigation into cancer and nutrition-potsdam study. Br. J. Nutr. 2010, 104, 1748–1759, doi:10.1017/S0007114510002916.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133