全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Genes  2013 

In Vivo RNAi-Based Screens: Studies in Model Organisms

DOI: 10.3390/genes4040646

Keywords: Drosophila, genome-wide screen, RNAi library, false results, interaction network

Full-Text   Cite this paper   Add to My Lib

Abstract:

RNA interference (RNAi) is a technique widely used for gene silencing in organisms and cultured cells, and depends on sequence homology between double-stranded RNA (dsRNA) and target mRNA molecules. Numerous cell-based genome-wide screens have successfully identified novel genes involved in various biological processes, including signal transduction, cell viability/death, and cell morphology. However, cell-based screens cannot address cellular processes such as development, behavior, and immunity. Drosophila and Caenorhabditis elegans are two model organisms whose whole bodies and individual body parts have been subjected to RNAi-based genome-wide screening. Moreover, Drosophila RNAi allows the manipulation of gene function in a spatiotemporal manner when it is implemented using the Gal4/UAS system. Using this inducible RNAi technique, various large-scale screens have been performed in Drosophila, demonstrating that the method is straightforward and valuable. However, accumulated results reveal that the results of RNAi-based screens have relatively high levels of error, such as false positives and negatives. Here, we review in vivo RNAi screens in Drosophila and the methods that could be used to remove ambiguity from screening results.

References

[1]  Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391, 806–811, doi:10.1038/35888.
[2]  C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: A platform for investigating biology. Science 1998, 282, 2012–2018, doi:10.1126/science.282.5396.2012.
[3]  Adams, M.D.; Celniker, S.E.; Holt, R.A.; Evans, C.A.; Gocayne, J.D.; Amanatides, P.G.; Scherer, S.E.; Li, P.W.; Hoskins, R.A.; Galle, R.F.; et al. The genome sequence of Drosophila melanogaster. Science 2000, 287, 2185–2195, doi:10.1126/science.287.5461.2185.
[4]  Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; FitzHugh, W.; et al. Initial sequencing and analysis of the human genome. Nature 2001, 409, 860–921.
[5]  Venter, J.C.; Adams, M.D.; Myers, E.W.; Li, P.W.; Mural, R.J.; Sutton, G.G.; Smith, H.O.; Yandell, M.; Evans, C.A.; Holt, R.A.; et al. The sequence of the human genome. Science 2001, 291, 1304–1351, doi:10.1126/science.1058040.
[6]  Meister, G.; Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature 2004, 431, 343–349, doi:10.1038/nature02873.
[7]  Silva, J.; Chang, K.; Hannon, G.J.; Rivas, F.V. RNA-interference-based functional genomics in mammalian cells: Reverse genetics coming of age. Oncogene 2004, 23, 8401–8409, doi:10.1038/sj.onc.1208176.
[8]  Ghildiyal, M.; Zamore, P.D. Small silencing RNAs: An expanding universe. Nat. Rev. Genet. 2009, 10, 94–108, doi:10.1038/nrg2504.
[9]  Whitehurst, A.W.; Bodemann, B.O.; Cardenas, J.; Ferguson, D.; Girard, L.; Peyton, M.; Minna, J.D.; Michnoff, C.; Hao, W.; Roth, M.G.; et al. Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature 2007, 446, 815–819, doi:10.1038/nature05697.
[10]  Boutros, M.; Kiger, A.A.; Armknecht, S.; Kerr, K.; Hild, M.; Koch, B.; Haas, S.A.; Paro, R.; Perrimon, N. Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science 2004, 303, 832–835, doi:10.1126/science.1091266.
[11]  Ulvila, J.; Parikka, M.; Kleino, A.; Sormunen, R.; Ezekowitz, R.A.; Kocks, C.; Ramet, M. Double-stranded RNA is internalized by scavenger receptor-mediated endocytosis in Drosophila S2 cells. J. Biol. Chem. 2006, 281, 14370–14375.
[12]  Timmons, L.; Fire, A. Specific interference by ingested dsRNA. Nature 1998, 395, 854, doi:10.1038/27579.
[13]  Tabara, H.; Grishok, A.; Mello, C.C. RNAi in C. elegans: Soaking in the genome sequence. Science 1998, 282, 430–431, doi:10.1126/science.282.5388.430.
[14]  Maeda, I.; Kohara, Y.; Yamamoto, M.; Sugimoto, A. Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Curr. Biol. 2001, 11, 171–176, doi:10.1016/S0960-9822(01)00052-5.
[15]  Lehner, B.; Tischler, J.; Fraser, A.G. RNAi screens in Caenorhabditis elegans in a 96-well liquid format and their application to the systematic identification of genetic interactions. Nat. Protoc. 2006, 1, 1617–1620, doi:10.1038/nprot.2006.245.
[16]  Kennerdell, J.R.; Carthew, R.W. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 1998, 95, 1017–1026, doi:10.1016/S0092-8674(00)81725-0.
[17]  Misquitta, L.; Paterson, B.M. Targeted disruption of gene function in Drosophila by RNA interference (RNA-i): A role for nautilus in embryonic somatic muscle formation. Proc. Natl. Acad. Sci. USA 1999, 96, 1451–1456, doi:10.1073/pnas.96.4.1451.
[18]  Lam, G.; Thummel, C.S. Inducible expression of double-stranded RNA directs specific genetic interference in Drosophila. Curr. Biol. 2000, 10, 957–963, doi:10.1016/S0960-9822(00)00631-X.
[19]  Fortier, E.; Belote, J.M. Temperature-dependent gene silencing by an expressed inverted repeat in Drosophila. Genesis 2000, 26, 240–244, doi:10.1002/(SICI)1526-968X(200004)26:4<240::AID-GENE40>3.0.CO;2-P.
[20]  Martinek, S.; Young, M.W. Specific genetic interference with behavioral rhythms in Drosophila by expression of inverted repeats. Genetics 2000, 156, 1717–1725.
[21]  Giordano, E.; Rendina, R.; Peluso, I.; Furia, M. RNAi triggered by symmetrically transcribed transgenes in Drosophila melanogaster. Genetics 2002, 160, 637–648.
[22]  Dietzl, G.; Chen, D.; Schnorrer, F.; Su, K.C.; Barinova, Y.; Fellner, M.; Gasser, B.; Kinsey, K.; Oppel, S.; Scheiblauer, S.; et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 2007, 448, 151–156, doi:10.1038/nature05954.
[23]  NIG-FLY. Available online: http://www.shigen.nig.ac.jp/fly/nigfly/about/aboutRnai.jsp/ (accessed on 19 November 2013).
[24]  Transgenic RNAi Project. Available online: http://www.flyrnai.org/TRiP-HOME.html/ (accessed on 19 November 2013).
[25]  Brand, A.H.; Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 1993, 118, 401–415.
[26]  Zamore, P.D.; Tuschl, T.; Sharp, P.A.; Bartel, D.P. RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 2000, 101, 25–33, doi:10.1016/S0092-8674(00)80620-0.
[27]  Elbashir, S.M.; Lendeckel, W.; Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 2001, 15, 188–200, doi:10.1101/gad.862301.
[28]  Elbashir, S.M.; Harborth, J.; Lendeckel, W.; Yalcin, A.; Weber, K.; Tuschl, T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001, 411, 494–498, doi:10.1038/35078107.
[29]  Bernstein, E.; Caudy, A.A.; Hammond, S.M.; Hannon, G.J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001, 409, 363–366, doi:10.1038/35053110.
[30]  Hammond, S.M.; Bernstein, E.; Beach, D.; Hannon, G.J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000, 404, 293–296, doi:10.1038/35005107.
[31]  Karpala, A.J.; Doran, T.J.; Bean, A.G. Immune responses to dsRNA: Implications for gene silencing technologies. Immunol. Cell Biol. 2005, 83, 211–216, doi:10.1111/j.1440-1711.2005.01331.x.
[32]  Gantier, M.P.; Williams, B.R. The response of mammalian cells to double-stranded RNA. Cytokine Growth Factor Rev. 2007, 18, 363–371, doi:10.1016/j.cytogfr.2007.06.016.
[33]  Bantounas, I.; Phylactou, L.A.; Uney, J.B. RNA interference and the use of small interfering RNA to study gene function in mammalian systems. J. Mol. Endocrinol. 2004, 33, 545–557, doi:10.1677/jme.1.01582.
[34]  Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75, 843–854, doi:10.1016/0092-8674(93)90529-Y.
[35]  Wightman, B.; Ha, I.; Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993, 75, 855–862, doi:10.1016/0092-8674(93)90530-4.
[36]  Lee, Y.; Ahn, C.; Han, J.; Choi, H.; Kim, J.; Yim, J.; Lee, J.; Provost, P.; Radmark, O.; Kim, S.; et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003, 425, 415–419, doi:10.1038/nature01957.
[37]  Yates, L.A.; Norbury, C.J.; Gilbert, R.J. The long and short of microRNA. Cell 2013, 153, 516–519, doi:10.1016/j.cell.2013.04.003.
[38]  Chang, K.; Elledge, S.J.; Hannon, G.J. Lessons from Nature: MicroRNA-based shRNA libraries. Nat. Methods 2006, 3, 707–714, doi:10.1038/nmeth923.
[39]  Ni, J.Q.; Zhou, R.; Czech, B.; Liu, L.P.; Holderbaum, L.; Yang-Zhou, D.; Shim, H.S.; Tao, R.; Handler, D.; Karpowicz, P.; et al. A genome-scale shRNA resource for transgenic RNAi in Drosophila. Nat. Methods 2011, 8, 405–407, doi:10.1038/nmeth.1592.
[40]  Sandy, P.; Ventura, A.; Jacks, T. Mammalian RNAi: A practical guide. Biotechniques 2005, 39, 215–224, doi:10.2144/05392RV01.
[41]  Couto, L.B.; High, K.A. Viral vector-mediated RNA interference. Curr. Opin. Pharmacol. 2010, 10, 534–542, doi:10.1016/j.coph.2010.06.007.
[42]  Pan, Q.; van der Laan, L.J.; Janssen, H.L.; Peppelenbosch, M.P. A dynamic perspective of RNAi library development. Trends Biotechnol. 2012, 30, 206–215, doi:10.1016/j.tibtech.2012.01.002.
[43]  Mohr, S.; Bakal, C.; Perrimon, N. Genomic screening with RNAi: Results and challenges. Annu. Rev. Biochem. 2010, 79, 37–64, doi:10.1146/annurev-biochem-060408-092949.
[44]  Flockhart, I.T.; Booker, M.; Hu, Y.; McElvany, B.; Gilly, Q.; Mathey-Prevot, B.; Perrimon, N.; Mohr, S.E. FlyRNAi.org—The database of the Drosophila RNAi screening center: 2012 update. Nucleic Acids Res. 2012, 40, D715–D719, doi:10.1093/nar/gkr953.
[45]  Schmidt, E.E.; Pelz, O.; Buhlmann, S.; Kerr, G.; Horn, T.; Boutros, M. GenomeRNAi: A database for cell-based and in vivo RNAi phenotypes, 2013 update. Nucleic Acids Res. 2013, 41, D1021–D1026.
[46]  Liu, T.; Sims, D.; Baum, B. Parallel RNAi screens across different cell lines identify generic and cell type-specific regulators of actin organization and cell morphology. Genome Biol. 2009, 10, R26, doi:10.1186/gb-2009-10-3-r26.
[47]  Sepp, K.J.; Hong, P.; Lizarraga, S.B.; Liu, J.S.; Mejia, L.A.; Walsh, C.A.; Perrimon, N. Identification of neural outgrowth genes using genome-wide RNAi. PLoS Genet. 2008, 4, e1000111, doi:10.1371/journal.pgen.1000111.
[48]  Hayashi, S.; Ito, K.; Sado, Y.; Taniguchi, M.; Akimoto, A.; Takeuchi, H.; Aigaki, T.; Matsuzaki, F.; Nakagoshi, H.; Tanimura, T.; et al. GETDB, a database compiling expression patterns and molecular locations of a collection of Gal4 enhancer traps. Genesis 2002, 34, 58–61, doi:10.1002/gene.10137.
[49]  Drosophila Genetic Resource Center. Available online: http://www.dgrc.kit.ac.jp/ (accessed on 19 November 2013).
[50]  Yamamoto-Hino, M.; Goto, S. Rikkyo University, Tokyo, Japan, 2013, Unpublished work.
[51]  Vinna Drosophila RNAi Center. Available online: http://stockcenter.vdrc.at/control/main/ (accessed on 19 November 2013).
[52]  dsCheck. Available online: http://dscheck.rnai.jp/ (accessed on 19 November 2013).
[53]  Vinna Drosophila RNAi Center. Definition. Available online: http://stockcenter.vdrc.at/control/vdrcdefinition/ (accessed on 19 November 2013).
[54]  Meadows, L. Vienna, Austria, 2013.
[55]  Research Resource Circulation. Available online: http://rrc.nbrp.jp/index.jsp/ (accessed on 19 November 2013).
[56]  Cronin, S.J.; Nehme, N.T.; Limmer, S.; Liegeois, S.; Pospisilik, J.A.; Schramek, D.; Leibbrandt, A.; Simoes Rde, M.; Gruber, S.; Puc, U.; et al. Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection. Science 2009, 325, 340–343, doi:10.1126/science.1173164.
[57]  Osman, D.; Gobert, V.; Ponthan, F.; Heidenreich, O.; Haenlin, M.; Waltzer, L. A Drosophila model identifies calpains as modulators of the human leukemogenic fusion protein AML1-ETO. Proc. Natl. Acad. Sci. USA 2009, 106, 12043–12048.
[58]  Yamamoto-Hino, M.; Kanie, Y.; Awano, W.; Aoki-Kinoshita, K.F.; Yano, H.; Nishihara, S.; Okano, H.; Ueda, R.; Kanie, O.; Goto, S. Identification of genes required for neural-specific glycosylation using functional genomics. PLoS Genet. 2010, 6, e1001254.
[59]  Avet-Rochex, A.; Boyer, K.; Polesello, C.; Gobert, V.; Osman, D.; Roch, F.; Auge, B.; Zanet, J.; Haenlin, M.; Waltzer, L. An in vivo RNA interference screen identifies gene networks controlling Drosophila melanogaster blood cell homeostasis. BMC Dev. Biol. 2010, 10, 65, doi:10.1186/1471-213X-10-65.
[60]  Neely, G.G.; Kuba, K.; Cammarato, A.; Isobe, K.; Amann, S.; Zhang, L.; Murata, M.; Elmen, L.; Gupta, V.; Arora, S.; et al. A global in vivo Drosophila RNAi screen identifies NOT3 as a conserved regulator of heart function. Cell 2010, 141, 142–153, doi:10.1016/j.cell.2010.02.023.
[61]  Neely, G.G.; Hess, A.; Costigan, M.; Keene, A.C.; Goulas, S.; Langeslag, M.; Griffin, R.S.; Belfer, I.; Dai, F.; Smith, S.B.; et al. A genome-wide Drosophila screen for heat nociception identifies alpha2delta3 as an evolutionarily conserved pain gene. Cell 2010, 143, 628–638, doi:10.1016/j.cell.2010.09.047.
[62]  Lesch, C.; Jo, J.; Wu, Y.; Fish, G.S.; Galko, M.J. A targeted UAS-RNAi screen in Drosophila larvae identifies wound closure genes regulating distinct cellular processes. Genetics 2010, 186, 943–957, doi:10.1534/genetics.110.121822.
[63]  Schnorrer, F.; Schonbauer, C.; Langer, C.C.; Dietzl, G.; Novatchkova, M.; Schernhuber, K.; Fellner, M.; Azaryan, A.; Radolf, M.; Stark, A.; et al. Systematic genetic analysis of muscle morphogenesis and function in Drosophila. Nature 2010, 464, 287–291.
[64]  Pospisilik, J.A.; Schramek, D.; Schnidar, H.; Cronin, S.J.; Nehme, N.T.; Zhang, X.; Knauf, C.; Cani, P.D.; Aumayr, K.; Todoric, J.; et al. Drosophila genome-wide obesity screen reveals hedgehog as a determinant of brown versus white adipose cell fate. Cell 2010, 140, 148–160, doi:10.1016/j.cell.2009.12.027.
[65]  Neumuller, R.A.; Richter, C.; Fischer, A.; Novatchkova, M.; Neumuller, K.G.; Knoblich, J.A. Genome-wide analysis of self-renewal in Drosophila neural stem cells by transgenic RNAi. Cell Stem Cell 2011, 8, 580–593, doi:10.1016/j.stem.2011.02.022.
[66]  Yano, H.; Yamamoto-Hino, M.; Awano, W.; Aoki-Kinoshita, K.F.; Tsuda-Sakurai, K.; Okano, H.; Goto, S. Identification of proteasome components required for apical localization of Chaoptin using functional genomics. J. Neurogenet. 2012, 26, 53–63, doi:10.3109/01677063.2012.661497.
[67]  Carney, T.D.; Miller, M.R.; Robinson, K.J.; Bayraktar, O.A.; Osterhout, J.A.; Doe, C.Q. Functional genomics identifies neural stem cell sub-type expression profiles and genes regulating neuroblast homeostasis. Dev. Biol. 2012, 361, 137–146, doi:10.1016/j.ydbio.2011.10.020.
[68]  Valakh, V.; Naylor, S.A.; Berns, D.S.; DiAntonio, A. A large-scale RNAi screen identifies functional classes of genes shaping synaptic development and maintenance. Dev. Biol. 2012, 366, 163–171, doi:10.1016/j.ydbio.2012.04.008.
[69]  Mummery-Widmer, J.L.; Yamazaki, M.; Stoeger, T.; Novatchkova, M.; Bhalerao, S.; Chen, D.; Dietzl, G.; Dickson, B.J.; Knoblich, J.A. Genome-wide analysis of Notch signalling in Drosophila by transgenic RNAi. Nature 2009, 458, 987–992, doi:10.1038/nature07936.
[70]  Vo, S.H.; Butzlaff, M.; Pru, S.K.; Ni Charthaigh, R.A.; Karsten, P.; Lankes, A.; Hamm, S.; Simons, M.; Adryan, B.; Schulz, J.B.; et al. Large-scale screen for modifiers of ataxin-3-derived polyglutamine-induced toxicity in Drosophila. PLoS One 2012, 7, e47452, doi:10.1371/journal.pone.0047452.
[71]  Llamusi, B.; Bargiela, A.; Fernandez-Costa, J.M.; Garcia-Lopez, A.; Klima, R.; Feiguin, F.; Artero, R. Muscleblind, BSF and TBPH are mislocalized in the muscle sarcomere of a Drosophila myotonic dystrophy model. Dis. Model. Mech. 2013, 6, 184–196.
[72]  Kambris, Z.; Brun, S.; Jang, I.H.; Nam, H.J.; Romeo, Y.; Takahashi, K.; Lee, W.J.; Ueda, R.; Lemaitre, B. Drosophila immunity: A large-scale in vivo RNAi screen identifies five serine proteases required for Toll activation. Curr. Biol. 2006, 16, 808–813, doi:10.1016/j.cub.2006.03.020.
[73]  Saj, A.; Arziman, Z.; Stempfle, D.; van Belle, W.; Sauder, U.; Horn, T.; Durrenberger, M.; Paro, R.; Boutros, M.; Merdes, G. A combined ex vivo and in vivo RNAi screen for notch regulators in Drosophila reveals an extensive notch interaction network. Dev. Cell. 2010, 18, 862–876, doi:10.1016/j.devcel.2010.03.013.
[74]  Port, F.; Hausmann, G.; Basler, K. A genome-wide RNA interference screen uncovers two p24 proteins as regulators of Wingless secretion. EMBO Rep. 2011, 12, 1144–1152, doi:10.1038/embor.2011.165.
[75]  Du, J.; Zhang, J.; Su, Y.; Liu, M.; Ospina, J.K.; Yang, S.; Zhu, A.J. In vivo RNAi screen reveals neddylation genes as novel regulators of Hedgehog signaling. PLoS One 2011, 6, e24168.
[76]  Aikin, R.; Cervantes, A.; D'Angelo, G.; Ruel, L.; Lacas-Gervais, S.; Schaub, S.; Therond, P. A genome-wide RNAi screen identifies regulators of cholesterol-modified hedgehog secretion in Drosophila. PLoS One 2012, 7, e33665.
[77]  Costello, J.C.; Dalkilic, M.M.; Beason, S.M.; Gehlhausen, J.R.; Patwardhan, R.; Middha, S.; Eads, B.D.; Andrews, J.R. Gene networks in Drosophila melanogaster: Integrating experimental data to predict gene function. Genome Biol. 2009, 10, R97, doi:10.1186/gb-2009-10-9-r97.
[78]  Bilen, J.; Bonini, N.M. Genome-wide screen for modifiers of ataxin-3 neurodegeneration in Drosophila. PLoS Genet. 2007, 3, 1950–1964.
[79]  Zhang, S.; Binari, R.; Zhou, R.; Perrimon, N. A genomewide RNA interference screen for modifiers of aggregates formation by mutant Huntingtin in Drosophila. Genetics 2010, 184, 1165–1179, doi:10.1534/genetics.109.112516.
[80]  Nollen, E.A.; Garcia, S.M.; van Haaften, G.; Kim, S.; Chavez, A.; Morimoto, R.I.; Plasterk, R.H. Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation. Proc. Natl. Acad. Sci. USA 2004, 101, 6403–6408.
[81]  Jang, I.H.; Chosa, N.; Kim, S.H.; Nam, H.J.; Lemaitre, B.; Ochiai, M.; Kambris, Z.; Brun, S.; Hashimoto, C.; Ashida, M.; et al. A Spatzle-processing enzyme required for toll signaling activation in Drosophila innate immunity. Dev. Cell 2006, 10, 45–55.
[82]  Horn, T.; Arziman, Z.; Berger, J.; Boutros, M. GenomeRNAi: A database for cell-based RNAi phenotypes. Nucleic Acids Res. 2007, 35, D492–D497, doi:10.1093/nar/gkl906.
[83]  Flybase. Available online: http://flybase.org/ (accessed on 19 November 2013).
[84]  Echeverri, C.J.; Beachy, P.A.; Baum, B.; Boutros, M.; Buchholz, F.; Chanda, S.K.; Downward, J.; Ellenberg, J.; Fraser, A.G.; Hacohen, N.; et al. Minimizing the risk of reporting false positives in large-scale RNAi screens. Nat. Methods 2006, 3, 777–779, doi:10.1038/nmeth1006-777.
[85]  Kondo, S.; Booker, M.; Perrimon, N. Cross-species RNAi rescue platform in Drosophila melanogaster. Genetics 2009, 183, 1165–1173, doi:10.1534/genetics.109.106567.
[86]  Booker, M.; Samsonova, A.A.; Kwon, Y.; Flockhart, I.; Mohr, S.E.; Perrimon, N. False negative rates in Drosophila cell-based RNAi screens: A case study. BMC Genomics 2011, 12, 50, doi:10.1186/1471-2164-12-50.
[87]  Groth, A.C.; Fish, M.; Nusse, R.; Calos, M.P. Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 2004, 166, 1775–1782, doi:10.1534/genetics.166.4.1775.
[88]  Bateman, J.R.; Lee, A.M.; Wu, C.T. Site-specific transformation of Drosophila via phiC31 integrase-mediated cassette exchange. Genetics 2006, 173, 769–777, doi:10.1534/genetics.106.056945.
[89]  Venken, K.J.; He, Y.; Hoskins, R.A.; Bellen, H.J. P[acman]: A BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science 2006, 314, 1747–1751, doi:10.1126/science.1134426.
[90]  Bischof, J.; Maeda, R.K.; Hediger, M.; Karch, F.; Basler, K. An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc. Natl. Acad. Sci. USA 2007, 104, 3312–3317, doi:10.1073/pnas.0611511104.
[91]  Markstein, M.; Pitsouli, C.; Villalta, C.; Celniker, S.E.; Perrimon, N. Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nat. Genet. 2008, 40, 476–483, doi:10.1038/ng.101.
[92]  Pfeiffer, B.D.; Ngo, T.T.; Hibbard, K.L.; Murphy, C.; Jenett, A.; Truman, J.W.; Rubin, G.M. Refinement of tools for targeted gene expression in Drosophila. Genetics 2010, 186, 735–755, doi:10.1534/genetics.110.119917.
[93]  Kondo, S.; Ueda, R. National institute of genetics: Mishima, Japan, 2013.
[94]  Wang, L.; Tu, Z.; Sun, F. A network-based integrative approach to prioritize reliable hits from multiple genome-wide RNAi screens in Drosophila. BMC Genomics 2009, 10, 220, doi:10.1186/1471-2164-10-220.
[95]  Guest, S.T.; Yu, J.; Liu, D.; Hines, J.A.; Kashat, M.A.; Finley, R.L., Jr. A protein network-guided screen for cell cycle regulators in Drosophila. BMC Syst. Biol. 2011, 5, 65, doi:10.1186/1752-0509-5-65.
[96]  Zender, L.; Xue, W.; Zuber, J.; Semighini, C.P.; Krasnitz, A.; Ma, B.; Zender, P.; Kubicka, S.; Luk, J.M.; Schirmacher, P.; et al. An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell 2008, 135, 852–864.
[97]  Bric, A.; Miething, C.; Bialucha, C.U.; Scuoppo, C.; Zender, L.; Krasnitz, A.; Xuan, Z.; Zuber, J.; Wigler, M.; Hicks, J.; et al. Functional identification of tumor-suppressor genes through an in vivo RNA interference screen in a mouse lymphoma model. Cancer Cell 2009, 16, 324–335, doi:10.1016/j.ccr.2009.08.015.
[98]  Meacham, C.E.; Ho, E.E.; Dubrovsky, E.; Gertler, F.B.; Hemann, M.T. In vivo RNAi screening identifies regulators of actin dynamics as key determinants of lymphoma progression. Nat. Genet. 2009, 41, 1133–1137, doi:10.1038/ng.451.
[99]  Wuestefeld, T.; Pesic, M.; Rudalska, R.; Dauch, D.; Longerich, T.; Kang, T.W.; Yevsa, T.; Heinzmann, F.; Hoenicke, L.; Hohmeyer, A.; et al. A Direct in vivo RNAi screen identifies MKK4 as a key regulator of liver regeneration. Cell 2013, 153, 389–401, doi:10.1016/j.cell.2013.03.026.
[100]  Varble, A.; Benitez, A.A.; Schmid, S.; Sachs, D.; Shim, J.V.; Rodriguez-Barrueco, R.; Panis, M.; Crumiller, M.; Silva, J.M.; Sachidanandam, R.; et al. An in vivo RNAi screening approach to identify host determinants of virus replication. Cell Host Microbe 2013, 14, 346–356.
[101]  Beronja, S.; Janki, P.; Heller, E.; Lien, W.H.; Keyes, B.E.; Oshimori, N.; Fuchs, E. RNAi screens in mice identify physiological regulators of oncogenic growth. Nature 2013, 501, 185–190.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133