全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Genes  2013 

Nickel and Epigenetic Gene Silencing

DOI: 10.3390/genes4040583

Keywords: epigenetics, gene silencing, heterochromatin, DNA methylation, histone modification, miRNA

Full-Text   Cite this paper   Add to My Lib

Abstract:

Insoluble nickel compounds are well-established human carcinogens. Occupational exposure to these compounds leads to increased incidence of lung and nasal cancer in nickel refinery workers. Apart from its weak mutagenic activity and hypoxia mimicking effect there is mounting experimental evidence indicating that epigenetic alteration plays an important role in nickel-induced carcinogenesis. Multiple epigenetic mechanisms have been identified to mediate nickel-induced gene silencing. Nickel ion is able to induce heterochromatinization by binding to DNA-histone complexes and initiating chromatin condensation. The enzymes required for establishing or removing epigenetic marks can be targeted by nickel, leading to altered DNA methylation and histone modification landscapes. The current review will focus on the epigenetic changes that contribute to nickel-induced gene silencing.

References

[1]  Polednak, A.P. Mortality among welders, including a group exposed to nickel oxides. Arch. Environ. Health (US) 1981, 36, 235–242, doi:10.1080/00039896.1981.10667630.
[2]  Grimsrud, T.K.; Berge, S.R.; Resmann, F.; Norseth, T.; Andersen, A. Assessment of historical exposures in a nickel refinery in Norway. Scand. J. Work Environ. Health 2000, 26, 338–345, doi:10.5271/sjweh.551.
[3]  Doll, R.; Morgan, L.G.; Speizer, F.E. Cancers of the lung and nasal sinuses in nickel workers. Br. J. Cancer 1970, 24, 623–632, doi:10.1038/bjc.1970.76.
[4]  Roberts, R.S.; Julian, J.A.; Muir, D.C.; Shannon, H.S. Cancer mortality associated with the high-temperature oxidation of nickel subsulfide. IARC Sci. Publ. 1984, 53, 23–35.
[5]  Roberts, R.S.; Julian, J.A.; Muir, D.C.; Shannon, H.S. A study of mortality in workers engaged in the mining, smelting, and refining of nickel. II. Mortality from cancer of the respiratory tract and kidney. Toxicol. Ind. Health (USA) 1989, 5, 975–993.
[6]  Grimsrud, T.K.; Berge, S.R.; Haldorsen, T.; Andersen, A. Exposure to different forms of nickel and risk of lung cancer. Am. J. Epidemiol. 2002, 156, 1123–1132, doi:10.1093/aje/kwf165.
[7]  Sunderman, F.W. Carcinogenicity of nickel compounds in animals. IARC Sci. Publ. 1984, 53, 127–142.
[8]  Lumb, G.; Sunderman, F.W. The mechanism of malignant tumor induction by nickel subsulfide. Ann. Clin. Lab. Sci. 1988, 18, 353–366.
[9]  Kasprzak, K.S.; Sunderman, F.W.; Salnikow, K. Nickel carcinogenesis. Mutat. Res. 2003, 533, 67–97, doi:10.1016/j.mrfmmm.2003.08.021.
[10]  Patierno, S.R.; Dirscherl, L.A.; Xu, J. Transformation of rat tracheal epithelial cells to immortal growth variants by particulate and soluble nickel compounds. Mutat. Res. 1993, 300, 179–193, doi:10.1016/0165-1218(93)90049-J.
[11]  Landolph, J.R. Molecular mechanisms of transformation of C3H/10T1/2 C1 8 mouse embryo cells and diploid human fibroblasts by carcinogenic metal compounds. Environ. Health Perspect. 1994, 102, 119–125.
[12]  Lu, H.; Shi, X.; Costa, M.; Huang, C. Carcinogenic effect of nickel compounds. Mol. Cell. Biochem. 2005, 279, 45–67, doi:10.1007/s11010-005-8215-2.
[13]  Miura, T.; Patierno, S.R.; Sakuramoto, T.; Landolph, J.R. Morphological and neoplastic transformation of C3H/10T1/2 Cl 8 mouse embryo cells by insoluble carcinogenic nickel compounds. Environ. Mol. Mutagen. 1989, 14, 65–78, doi:10.1002/em.2850140202.
[14]  IARC. Chromium, Nickel and Welding. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; World Health Organization: Lyon, France, 1990; Volume 49.
[15]  DOLL, R.; Andersen, A.; Cooper, W.; Cosmatos, I.; Cragle, D.; Easton, D.; Enterline, P.; Goldberg, M.; Metcalfe, L.; Norseth, T. Report of the international committee on nickel carcinogenesis in man. Scand. J. Work Environ. Health 1990, 16, 1–82, doi:10.5271/sjweh.1813.
[16]  Costa, M.; Davidson, T.L.; Chen, H.; Ke, Q.; Zhang, P.; Yan, Y.; Huang, C.; Kluz, T. Nickel carcinogenesis: Epigenetics and hypoxia signaling. Mutat. Res. 2005, 592, 79–88, doi:10.1016/j.mrfmmm.2005.06.008.
[17]  Salnikow, K.; Zhitkovich, A. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: Nickel, arsenic, and chromium. Chem. Res. Toxicol. 2008, 21, 28–44, doi:10.1021/tx700198a.
[18]  Chervona, Y.; Arita, A.; Costa, M. Carcinogenic metals and the epigenome: Understanding the effect of nickel, arsenic, and chromium. Metallomics 2012, 4, 619–627, doi:10.1039/c2mt20033c.
[19]  Conway, K.; Costa, M. Nonrandom chromosomal alterations in nickel-transformed Chinese hamster embryo cells. Cancer Res. 1989, 49, 6032–6038.
[20]  Conway, K.; Costa, M. The involvement of heterochromatic damage in nickel-induced transformation. Biol. Trace Elem. Res. 1989, 21, 437–444, doi:10.1007/BF02917286.
[21]  Clemens, F.; Verma, R.; Ramnath, J.; Landolph, J.R. Amplification of the Ect2 proto-oncogene and over-expression of Ect2 mRNA and protein in nickel compound and methylcholanthrene-transformed 10T1/2 mouse fibroblast cell lines. Toxicol. Appl. Pharmacol. 2005, 206, 138–149, doi:10.1016/j.taap.2005.02.009.
[22]  Salnikow, K.; Blagosklonny, M.V.; Ryan, H.; Johnson, R.; Costa, M. Carcinogenic nickel induces genes involved with hypoxic stress. Cancer Res. 2000, 60, 38–41.
[23]  Davidson, T.; Salnikow, K.; Costa, M. Hypoxia inducible factor-1 alpha-independent suppression of aryl hydrocarbon receptor-regulated genes by nickel. Mol. Pharmacol. 2003, 64, 1485–1493, doi:10.1124/mol.64.6.1485.
[24]  Salnikow, K.; Davidson, T.; Zhang, Q.; Chen, L.C.; Su, W.; Costa, M. The involvement of hypoxia-inducible transcription factor-1-dependent pathway in nickel carcinogenesis. Cancer Res. 2003, 63, 3524–3530.
[25]  Baylin, S.B.; Jones, P.A. A decade of exploring the cancer epigenomebiological and translational implications. Nat. Rev. Cancer 2011, 11, 726–734, doi:10.1038/nrc3130.
[26]  Dawson, M.A.; Kouzarides, T. Cancer epigenetics: From mechanism to therapy. Cell 2012, 150, 12–27, doi:10.1016/j.cell.2012.06.013.
[27]  Arita, A.; Costa, M. Epigenetics in metal carcinogenesis: Nickel, arsenic, chromium and cadmium. Metallomics 2009, 1, 222–228, doi:10.1039/b903049b.
[28]  You, J.S.; Jones, P.A. Cancer genetics and epigenetics: Two sides of the same coin? Cancer Cell 2012, 22, 9–20, doi:10.1016/j.ccr.2012.06.008.
[29]  Latham, J.A.; Dent, S.Y.R. Cross-regulation of histone modifications. Nat. Struct. Mol. Biol. 2007, 14, 1017–1024, doi:10.1038/nsmb1307.
[30]  Cohen, I.; Por?ba, E.; Kamieniarz, K.; Schneider, R. Histone modifiers in cancer: Friends or foes? Genes Cancer 2011, 2, 631–647, doi:10.1177/1947601911417176.
[31]  Greer, E.L.; Shi, Y. Histone methylation: A dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 2012, 13, 343–357, doi:10.1038/nrg3173.
[32]  Ball, M.P.; Li, J.B.; Gao, Y.; Lee, J.-H.; LeProust, E.M.; Park, I.-H.; Xie, B.; Daley, G.Q.; Church, G.M. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat. Biotechnol. 2009, 27, 361–368.
[33]  Jones, P.A. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 2012, 13, 484–492, doi:10.1038/nrg3230.
[34]  Li, X.-Q.; Guo, Y.-Y.; De, W. DNA methylation and microRNAs in cancer. World J. Gastroenterol. 2012, 18, 882–888, doi:10.3748/wjg.v18.i9.882.
[35]  Wu, S.C.; Zhang, Y. Active DNA demethylation: Many roads lead to Rome. Nat. Rev. Mol. Cell Biol. 2010, 11, 607–620, doi:10.1038/nrm2950.
[36]  Klein, C.B.; Conway, K.; Wang, X.W.; Bhamra, R.K.; Lin, X.H.; Cohen, M.D.; Annab, L.; Barrett, J.C.; Costa, M. Senescence of nickel-transformed cells by an X chromosome: Possible epigenetic control. Science 1991, 251, 796–799.
[37]  Klein, C.B.; Rossman, T.G. Transgenic Chinese hamster V79 cell lines which exhibit variable levels of gpt mutagenesis. Environ. Mol. Mutagen. 1990, 16, 1–12, doi:10.1002/em.2850160102.
[38]  Kargacin, B.; Klein, C.B.; Costa, M. Mutagenic responses of nickel oxides and nickel sulfides in Chinese hamster V79 cell lines at the xanthine-guanine phosphoribosyl transferase locus. Mutat. Res. 1993, 300, 63–72, doi:10.1016/0165-1218(93)90141-Y.
[39]  Lee, Y.W.; Pons, C.; Tummolo, D.M.; Klein, C.B.; Rossman, T.G.; Christie, N.T. Mutagenicity of soluble and insoluble nickel compounds at the gpt locus in G12 Chinese hamster cells. Environ. Mol. Mutagen. 1993, 21, 365–371, doi:10.1002/em.2850210408.
[40]  Verma, R.; Ramnath, J.; Clemens, F.; Kaspin, L.C.; Landolph, J.R. Molecular biology of nickel carcinogenesis: Identification of differentially expressed genes in morphologically transformed C3H10T1/2 Cl 8 mouse embryo fibroblast cell lines induced by specific insoluble nickel compounds. Mol. Cell. Biochem. 2004, 255, 203–216, doi:10.1023/B:MCBI.0000007276.94488.3d.
[41]  Landolph, J.R.; Verma, A.; Ramnath, J.; Clemens, F. Molecular biology of deregulated gene expression in transformed C3H/10T1/2 mouse embryo cell lines induced by specific insoluble carcinogenic nickel compounds. Environ. Health Perspect. 2002, 110, 845–850, doi:10.1289/ehp.02110s5845.
[42]  DeSilva, A.; Verma, R.; Landolph, J.R. Silencing of Expression the Beta Centaurin-2 and the FAD Synthetae Genes in Nickel Transformed C3H/10T1/2 Cell Lines. In Meal Ions in Biology and Medicine; Collery, P., Maymaud, I., Theophanides, T., Khassanova, I., Collery, T., Eds.; John Libbey Eurotext: Paris, France, 2008; Volume 10, pp. 65–67.
[43]  Lee, Y.W.; Klein, C.B.; Kargacin, B.; Salnikow, K.; Kitahara, J.; Dowjat, K.; Zhitkovich, A.; Christie, N.T.; Costa, M. Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: A new model for epigenetic carcinogens. Mol. Cell. Biol. 1995, 15, 2547–2557.
[44]  Ellen, T.P.; Kluz, T.; Harder, M.E.; Xiong, J.; Costa, M. Heterochromatinization as a potential mechanism of nickel-induced carcinogenesis. Biochemistry 2009, 48, 4626–4632, doi:10.1021/bi900246h.
[45]  Yan, Y.; Kluz, T.; Zhang, P.; Chen, H.-B.; Costa, M. Analysis of specific lysine histone H3 and H4 acetylation and methylation status in clones of cells with a gene silenced by nickel exposure. Toxicol. Appl. Pharmacol. 2003, 190, 272–277, doi:10.1016/S0041-008X(03)00169-8.
[46]  Wu, C.-H.; Tang, S.-C.; Wang, P.-H.; Lee, H.; Ko, J.-L. Nickel-induced epithelial-mesenchymal transition by reactive oxygen species generation and E-cadherin promoter hypermethylation. J. Biol. Chem. 2012, 287, 25292–25302, doi:10.1074/jbc.M111.291195.
[47]  Ji, W.; Yang, L.; Yu, L.; Yuan, J.; Hu, D.; Zhang, W.; Yang, J.; Pang, Y.; Li, W.; Lu, J.; et al. Epigenetic silencing of O6-methylguanine DNA methyltransferase gene in NiS-transformed cells. Carcinogenesis 2008, 29, 1267–1275, doi:10.1093/carcin/bgn012.
[48]  Yasaei, H.; Gilham, E.; Pickles, J.C.; Roberts, T.P.; O’Donovan, M.; Newbold, R.F. Carcinogen-specific mutational and epigenetic alterations in INK4A, INK4B and p53 tumor-suppressor genes drive induced senescence bypass in normal diploid mammalian cells. Oncogene 2013, 32, 171–179, doi:10.1038/onc.2012.45.
[49]  Govindarajan, B.; Klafter, R.; Miller, M.S.; Mansur, C.; Mizesko, M.; Bai, X.; LaMontagne, K.; Arbiser, J.L. Reactive oxygen-induced carcinogenesis causes hypermethylation of p16(Ink4a) and activation of MAP kinase. Mol. Med. 2002, 8, 1–8, doi:10.1007/s00894-001-0054-9.
[50]  Zhang, J.; Zhang, J.; Li, M.; Wu, Y.; Fan, Y.; Zhou, Y.; Tan, L.; Shao, Z.; Shi, H. Methylation of RAR-β2, RASSF1A, and CDKN2A genes induced by nickel subsulfide and nickel-carcinogenesis in rats. Biomed. Environ. Sci. 2011, 24, 163–171.
[51]  Broday, L.; Peng, W.; Kuo, M.H.; Salnikow, K.; Zoroddu, M.; Costa, M. Nickel compounds are novel inhibitors of histone H4 acetylation. Cancer Res. 2000, 60, 238–241.
[52]  Golebiowski, F.; Kasprzak, K.S. Inhibition of core histones acetylation by carcinogenic nickel(II). Mol. Cell. Biochem. 2005, 279, 133–139, doi:10.1007/s11010-005-8285-1.
[53]  Ke, Q.; Davidson, T.; Chen, H.; Kluz, T.; Costa, M. Alterations of histone modifications and transgene silencing by nickel chloride. Carcinogenesis 2006, 27, 1481–1488, doi:10.1093/carcin/bgl004.
[54]  Kang, J.; Zhang, Y.; Chen, J.; Chen, H.; Lin, C.; Wang, Q.; Ou, Y. Nickel-induced histone hypoacetylation: The role of reactive oxygen species. Toxicol. Sci. 2003, 74, 279–286, doi:10.1093/toxsci/kfg137.
[55]  Chen, C.-Y.; Wang, Y.-F.; Huang, W.-R.; Huang, Y.-T. Nickel induces oxidative stress and genotoxicity in human lymphocytes. Toxicol. Appl. Pharmacol. 2003, 189, 153–159, doi:10.1016/S0041-008X(03)00086-3.
[56]  Salnikow, K.; Gao, M.; Voitkun, V.; Huang, X.; Costa, M. Altered oxidative stress responses in nickel-resistant mammalian cells. Cancer Res. 1994, 54, 6407–6412.
[57]  Sutherland, J.E.; Peng, W.; Zhang, Q.; Costa, M. The histone deacetylase inhibitor trichostatin A reduces nickel-induced gene silencing in yeast and mammalian cells. Mutat. Res. 2001, 479, 225–233, doi:10.1016/S0027-5107(01)00163-4.
[58]  Zhang, Q.; Salnikow, K.; Kluz, T.; Chen, L.C.; Su, W.C.; Costa, M. Inhibition and reversal of nickel-induced transformation by the histone deacetylase inhibitor trichostatin A. Toxicol. Appl. Pharmacol. 2003, 192, 201–211, doi:10.1016/S0041-008X(03)00280-1.
[59]  Zoroddu, M.A.; Peana, M.; Medici, S.; Casella, L.; Monzani, E.; Costa, M. Nickel binding to histone H4. Dalton Trans. 2010, 39, 787–793, doi:10.1039/b916019c.
[60]  Chen, H.; Ke, Q.; Kluz, T.; Yan, Y.; Costa, M. Nickel ions increase histone H3 lysine 9 dimethylation and induce transgene silencing. Mol. Cell. Biol. 2006, 26, 3728–3737, doi:10.1128/MCB.26.10.3728-3737.2006.
[61]  Chen, H.; Kluz, T.; Zhang, R.; Costa, M. Hypoxia and nickel inhibit histone demethylase JMJD1A and repress Spry2 expression in human bronchial epithelial BEAS-2B cells. Carcinogenesis 2010, 31, 2136–2144, doi:10.1093/carcin/bgq197.
[62]  Chen, H.; Giri, N.C.; Zhang, R.; Yamane, K.; Zhang, Y.; Maroney, M.; Costa, M. Nickel ions inhibit histone demethylase JMJD1A and DNA repair enzyme ABH2 by replacing the ferrous iron in the catalytic centers. J. Biol. Chem. 2010, 285, 7374–7383.
[63]  He, L.; Hannon, G.J. MicroRNAs: Small RNAs with a big role in gene regulation. Nat. Rev. Genet. 2004, 5, 522–531, doi:10.1038/nrg1379.
[64]  Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell 2009, 136, 215–233, doi:10.1016/j.cell.2009.01.002.
[65]  Kozomara, A.; Griffiths-Jones, S. miRBase: Integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011, 39, D152–D157, doi:10.1093/nar/gkq1027.
[66]  Zhang, J.; Zhou, Y.; Ma, L.; Huang, S.; Wang, R.; Gao, R.; Wu, Y.; Shi, H.; Zhang, J. The alteration of MiR-222 and its target genes in nickel-induced tumor. Biol. Trace Elem. Res. 2013, 152, 267–274, doi:10.1007/s12011-013-9619-6.
[67]  Ji, W.; Yang, L.; Yuan, J.; Yang, L.; Zhang, M.; Qi, D.; Duan, X.; Xuan, A.; Zhang, W.; Lu, J.; et al. MicroRNA-152 targets DNA methyltransferase 1 in NiS-transformed cells via a feedback mechanism. Carcinogenesis 2013, 34, 446–453, doi:10.1093/carcin/bgs343.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133