全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Genes  2013 

Pathological and Evolutionary Implications of Retroviruses as Mobile Genetic Elements

DOI: 10.3390/genes4040573

Keywords: transposon, mobile genetic element, virology

Full-Text   Cite this paper   Add to My Lib

Abstract:

Retroviruses, a form of mobile genetic elements, have important roles in disease and primate evolution. Exogenous retroviruses, such as human immunodeficiency virus (HIV), have significant pathological implications that have created a massive public health challenge in recent years. Endogenous retroviruses (ERVs), which are the primary focus of this review, can also be pathogenic, as well as being beneficial to a host in some cases. Furthermore, retroviruses may have played a key role in primate evolution that resulted in the incorporation of these elements into the human genome. Retroviruses are mobile genetic elements that have important roles in disease and primate evolution. We will further discuss the pathogenic potential of retroviruses, including their role in cancer biology, and will briefly summarize their evolutionary implications.

References

[1]  Frost, L.S.; Leplae, R.; Summers, A.O.; Toussaint, A. Mobile genetic elements: The agents of open source evolution. Nat. Rev. Microbiol. 2005, 3, 722–732, doi:10.1038/nrmicro1235.
[2]  Chenais, B.; Caruso, A.; Hiard, S.; Casse, N. The impact of transposable elements on eukaryotic genomes: From genome size increase to genetic adaptation to stressful environments. Gene 2012, 509, 7–15, doi:10.1016/j.gene.2012.07.042.
[3]  Buzdin, A.A. A functional analysis of retroviral endogenous inserts in view of human genome evolution. Bioorg. Khim. 2010, 36, 38–46.
[4]  Kidwell, M.G.; Lisch, D. Transposable elements as sources of variation in animals and plants. Proc. Natl. Acad. Sci. USA 1997, 94, 7704–7711, doi:10.1073/pnas.94.15.7704.
[5]  Finnegan, D.J. Eukaryotic transposable elements and genome evolution. Trends Genet. 1989, 5, 103–107, doi:10.1016/0168-9525(89)90039-5.
[6]  Fischer, M.G.; Suttle, C.A. A virophage at the origin of large DNA transposons. Science 2011, 332, 231–234, doi:10.1126/science.1199412.
[7]  Momose, M.; Abe, Y.; Ozeki, Y. Miniature inverted-repeat transposable elements of Stowaway are active in potato. Genetics 2010, 186, 59–66, doi:10.1534/genetics.110.117606.
[8]  Lu, C.; Chen, J.; Zhang, Y.; Hu, Q.; Su, W.; Kuang, H. Miniature inverted-repeat transposable elements (MITEs) have been accumulated through amplification bursts and play important roles in gene expression and species diversity in Oryza sativa. Mol. Biol. Evol. 2012, 29, 1005–1017, doi:10.1093/molbev/msr282.
[9]  Huang, C.R.; Burns, K.H.; Boeke, J.D. Active transposition in genomes. Annu. Rev. Genet. 2012, 46, 651–675, doi:10.1146/annurev-genet-110711-155616.
[10]  O'Donnell, K.A.; Burns, K.H. Mobilizing diversity: Transposable element insertions in genetic variation and disease. Mob. DNA 2010, 1, 21, doi:10.1186/1759-8753-1-21.
[11]  Shukla, R.; Upton, K.R.; Munoz-Lopez, M.; Gerhardt, D.J.; Fischer, M.E.; Nguyen, T.; Brennan, P.M.; Baillie, J.K.; Collino, A.; Ghisletti, S.; et al. Endogenous retrotransposition activates oncogenic pathways in hepatocellular carcinoma. Cell 2013, 153, 101–111, doi:10.1016/j.cell.2013.02.032.
[12]  Goodier, J.L.; Kazazian, H.H., Jr. Retrotransposons revisited: The restraint and rehabilitation of parasites. Cell 2008, 135, 23–35, doi:10.1016/j.cell.2008.09.022.
[13]  Deininger, P.L. SINEs: Short Interspersed Repeated DNA Elements in Higher Eucaryotes. In Mobie DNA; Berg, D.E., Howe, M.M., Eds.; American Society for Microbiology: Washington, DC, USA, 1989.
[14]  Xiong, Y.; Eickbush, T.H. Similarity of reverse transcriptase-like sequences of viruses, transposable elements, and mitochondrial introns. Mol. Biol. Evol. 1988, 5, 675–690.
[15]  Varmus, H.; Brown, P. Retroviruses. In Mobile DNA; Berg, D.E., Howe, M.M., Eds.; American Society for Microbiology: Washington, DC, USA, 1989.
[16]  Larsson, E.; Andersson, G. Beneficial role of human endogenous retroviruses: Facts and hypotheses. Scand. J. Immunol. 1998, 48, 329–338, doi:10.1046/j.1365-3083.1998.00428.x.
[17]  Lower, R. The pathogenic potential of endogenous retroviruses: Facts and fantasies. Trends Microbiol. 1999, 7, 350–356, doi:10.1016/S0966-842X(99)01565-6.
[18]  Temin, H.M. Origin of retroviruses from cellular moveable genetic elements. Cell 1980, 21, 599–600, doi:10.1016/0092-8674(80)90420-1.
[19]  Temin, H.M.; Mizutani, S. RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature 1970, 226, 1211–1213, doi:10.1038/2261211a0.
[20]  Temin, H.M. Reprint of Temin’s 1971 Paper Proposing the Protovirus Hypothesis. In The DNA Provirus: Howard Temin’s Scientific Legacy; Geoffrey, C.M., Sugden, B., Eds.; American Society for Microbiology: Washington, DC, USA, 1971; pp. 55–60.
[21]  Xiong, Y.; Eickbush, T.H. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 1990, 9, 3353–3362.
[22]  Lower, R.; Lower, J.; Kurth, R. The viruses in all of us: Characteristics and biological significance of human endogenous retrovirus sequences. Proc. Natl. Acad. Sci. USA 1996, 93, 5177–5184, doi:10.1073/pnas.93.11.5177.
[23]  Best, S.; le Tissier, P.R.; Stoye, J.P. Endogenous retroviruses and the evolution of resistance to retroviral infection. Trends Microbiol. 1997, 5, 313–318, doi:10.1016/S0966-842X(97)01086-X.
[24]  Smith, R.G.; Gallo, R.C. Agents which inhibit reverse transcriptases. Life Sci. 1974, 15, 1711–1730, doi:10.1016/0024-3205(74)90173-8.
[25]  Oricchio, E.; Sciamanna, I.; Beraldi, R.; Tolstonog, G.V.; Schumann, G.G.; Spadafora, C. Distinct roles for LINE-1 and HERV-K retroelements in cell proliferation, differentiation and tumor progression. Oncogene 2007, 26, 4226–4233, doi:10.1038/sj.onc.1210214.
[26]  Orgel, L.E.; Crick, F.H. Selfish DNA: The ultimate parasite. Nature 1980, 284, 604–607, doi:10.1038/284604a0.
[27]  Temin, H.M. Origin and General Nature of Retroviruses. In The retroviridae; Levy, J.A., Ed.; Plenum Press: New York, NY, USA, 1992; pp. 1–18.
[28]  Bock, M.; Stoye, J.P. Endogenous retroviruses and the human germline. Curr. Opin. Genet. Dev. 2000, 10, 651–655, doi:10.1016/S0959-437X(00)00138-6.
[29]  Belshaw, R.; Pereira, V.; Katzourakis, A; Talbot, G.; Paces, J.; Burt, A.; Tristem, M. Long-term reinfection of the human genome by endogenous retroviruses. Proc. Natl. Acad. Sci. USA 2004, 101, 4894–4899.
[30]  Connolly, J.B. Lentiviruses in gene therapy clinical research. Gene Ther. 2002, 9, 1730–1734, doi:10.1038/sj.gt.3301893.
[31]  Schanab, O.; Humer, J.; Gleiss, A.; Mikula, M.; Sturlan, S.; Grunt, S.; Okamoto, I.; Muster, T.; Pehamberger, H.; Waltenberger, A. Expression of human endogenous retrovirus K is stimulated by ultraviolet radiation in melanoma. Pigment Cell Melanoma Res. 2011, 24, 656–665, doi:10.1111/j.1755-148X.2011.00860.x.
[32]  Loiacono, C.M.; Taus, N.S.; Mitchell, W.J. The herpes simplex virus type 1 ICP0 promoter is activated by viral reactivation stimuli in trigeminal ganglia neurons of transgenic mice. J. Neurovirol. 2003, 9, 336–345.
[33]  Johnson, T.P.; Frey, R.; Modugno, M.; Brennan, T.P.; Margulies, B.J. Development of an aciclovir implant for the effective long-term control of herpes simplex virus type-1 infection in Vero cells and in experimentally infected SKH-1 mice. Int. J. Antimicrob. Agents 2007, 30, 428–435, doi:10.1016/j.ijantimicag.2007.07.003.
[34]  Florl, A.R.; Lower, R.; Schmitz-Drager, B.J.; Schulz, W.A. DNA methylation and expression of LINE-1 and HERV-K provirus sequences in urothelial and renal cell carcinomas. Br. J. Cancer 1999, 80, 1312–1321, doi:10.1038/sj.bjc.6690524.
[35]  Santourlidis, S.; Florl, A.; Ackermann, R.; Wirtz, H.C.; Schulz, W.A. High. frequency of alterations in DNA methylation in adenocarcinoma of the prostate. Prostate 1999, 39, 166–174, doi:10.1002/(SICI)1097-0045(19990515)39:3<166::AID-PROS4>3.0.CO;2-J.
[36]  Pagano, J.S.; Blaser, M.; Buendia, M.A.; Damania, B.; Khalili, K.; Raab-Traub, N.; Roizman, B. Infectious agents and cancer: Criteria for a causal relation. Semin. Cancer Biol. 2004, 14, 453–471, doi:10.1016/j.semcancer.2004.06.009.
[37]  Liang, Q.; Xu, Z.; Xu, R.; Wu, L.; Zheng, S. Expression patterns of non-coding spliced transcripts from human endogenous retrovirus HERV-H elements in colon cancer. PLoS One 2012, 7, e29950, doi:10.1371/journal.pone.0029950.
[38]  Cegolon, L.; Salata, C.; Weiderpass, E.; Vineis, P.; Palu, G.; Mastrangelo, G. Human endogenous retroviruses and cancer prevention: Evidence and prospects. BMC Cancer 2013, 13, 4, doi:10.1186/1471-2407-13-4.
[39]  Contreras-Galindo, R.; Kaplan, M.H.; Leissner, P.; Verjat, T.; Ferlenghi, I.; Bagnoli, F.; Giusti, F.; Dosik, M.H.; Hayes, D.F.; Gitlin, S.D.; et al. Human endogenous retrovirus K (HML-2) elements in the plasma of people with lymphoma and breast cancer. J. Virol. 2008, 82, 9329–9336, doi:10.1128/JVI.00646-08.
[40]  Maeda, N.; Fan, H.; Yoshikai, Y. Oncogenesis by retroviruses: Old and new paradigms. Rev. Med. Virol. 2008, 18, 387–405, doi:10.1002/rmv.592.
[41]  Fan, H.; Johnson, C. Insertional oncogenesis by non-acute retroviruses: Implications for gene therapy. Viruses 2011, 3, 398–422, doi:10.3390/v3040398.
[42]  Serafino, A.; Balestrieri, E.; Pierimarchi, P.; Matteucci, C.; Moroni, G.; Oricchio, E.; Rasi, G.; Mastino, A.; Spadafora, C.; Garaci, E.; et al. The activation of human endogenous retrovirus K (HERV-K) is implicated in melanoma cell malignant transformation. Exp. Cell Res. 2009, 315, 849–862, doi:10.1016/j.yexcr.2008.12.023.
[43]  Schmitt, K.; Reichrath, J.; Roesch, A.; Meese, E.; Mayer, J. Transcriptional profiling of human endogenous retrovirus group HERV-K(HML-2) loci in melanoma. Genome Biol. Evol. 2013, 5, 307–328, doi:10.1093/gbe/evt010.
[44]  Iskow, R.C.; McCabe, M.T.; Mills, R.E.; Torene, S.; Pittard, W.S.; Neuwald, A.F.; van Meir, E.G.; Vertino, P.M.; Devine, S.E. Natural mutagenesis of human genomes by endogenous retrotransposons. Cell 2010, 141, 1253–1261, doi:10.1016/j.cell.2010.05.020.
[45]  Wilkins, A.S. The enemy within: An epigenetic role of retrotransposons in cancer initiation. Bioessays 2010, 32, 856–865, doi:10.1002/bies.201000008.
[46]  Medstrand, P.; van de Lagemaat, L.N.; Dunn, C.A.; Landry, J.R.; Svenback, D.; Mager, D.L. Impact of transposable elements on the evolution of mammalian gene regulation. Cytogenet. Genome Res. 2005, 110, 342–352, doi:10.1159/000084966.
[47]  Ting, C.N.; Rosenberg, M.P.; Snow, C.M.; Samuelson, L.C.; Meisler, M.H. Endogenous retroviral sequences are required for tissue-specific expression of a human salivary amylase gene. Genes Dev. 1992, 6, 1457–1465, doi:10.1101/gad.6.8.1457.
[48]  Samuelson, L.C.; Wiebauer, K.; Snow, C.M.; Meisler, M.H. Retroviral and pseudogene insertion sites reveal the lineage of human salivary and pancreatic amylase genes from a single gene during primate evolution. Mol. Cell. Biol. 1990, 10, 2513–2520.
[49]  Di Cristofano, A.; Strazzullo, M.; Longo, L.; La Mantia, G. Characterization and genomic mapping of the ZNF80 locus: Expression of this zinc-finger gene is driven by a solitary LTR of ERV9 endogenous retroviral family. Nucleic Acids Res. 1995, 23, 2823–2830, doi:10.1093/nar/23.15.2823.
[50]  Suzuki, H.; Hosokawa, Y.; Toda, H.; Nishikimi, M.; Ozawa, T. Common protein-binding sites in the 5'-flanking regions of human genes for cytochrome c1 and ubiquinone-binding protein. J. Biol. Chem. 1990, 265, 8159–8163.
[51]  Kjellman, C.; Sjogren, H.O.; Salford, L.G.; Widegren, B. HERV-F (XA34) is a full-length human endogenous retrovirus expressed in placental and fetal tissues. Gene 1999, 239, 99–107, doi:10.1016/S0378-1119(99)00372-8.
[52]  Kammerer, U.; Germeyer, A.; Stengel, S.; Kapp, M.; Denner, J. Human endogenous retrovirus K (HERV-K) is expressed in villous and extravillous cytotrophoblast cells of the human placenta. J. Reprod. Immunol. 2011, 91, 1–8.
[53]  Venables, P.J.; Brookes, S.M.; Griffiths, D.; Weiss, R.A.; Boyd, M.T. Abundance of an endogenous retroviral envelope protein in placental trophoblasts suggests a biological function. Virology 1995, 211, 589–592, doi:10.1006/viro.1995.1442.
[54]  Ober, C. The maternal-fetal relationship in human pregnancy: An immunogenetic perspective. Exp. Clin. Immunogenet. 1992, 9, 1–14.
[55]  Linscheid, C.; Petroff, M.G. Minor histocompatibility antigens and the maternal immune response to the fetus during pregnancy. Am. J. Reprod. Immunol. 2013, 69, 304–314, doi:10.1111/aji.12075.
[56]  Holder, B.S.; Tower, C.L.; Forbes, K.; Mulla, M.J.; Aplin, J.D.; Abrahams, V.M. Immune cell activation by trophoblast-derived microvesicles is mediated by syncytin 1. Immunology 2012, 136, 184–191, doi:10.1111/j.1365-2567.2012.03568.x.
[57]  Villareal, L.P. On viruses, sex, and motherhood. J. Virol. 1997, 71, 859–865.
[58]  Mangeney, M.; Renard, M.; Schlecht-Louf, G.; Bouallaga, I.; Heidmann, O.; Letzelter, C.; Richaud, A.; Ducos, B.; Heidmann, T. Placental syncytins: Genetic disjunction between the fusogenic and immunosuppressive activity of retroviral envelope proteins. Proc. Natl. Acad. Sci. USA 2007, 104, 20534–20539, doi:10.1073/pnas.0707873105.
[59]  Conrad, B.; Weissmahr, R.N.; Boni, J.; Arcari, R.; Schupbach, J.; Mach, B. A human endogenous retroviral superantigen as candidate autoimmune gene in type I diabetes. Cell 1997, 90, 303–313, doi:10.1016/S0092-8674(00)80338-4.
[60]  Lee, Y.K.; Chew, A.; Phan, H.; Greenhalgh, D.G.; Cho, K. Genome-wide expression profiles of endogenous retroviruses in lymphoid tissues and their biological properties. Virology 2008, 373, 263–273, doi:10.1016/j.virol.2007.10.043.
[61]  Sverdlov, E.D. Retroviruses and primate evolution. Bioessays 2000, 22, 161–171, doi:10.1002/(SICI)1521-1878(200002)22:2<161::AID-BIES7>3.0.CO;2-X.
[62]  Kim, H.S. Genomic impact, chromosomal distribution and transcriptional regulation of HERV elements. Mol. Cells 2012, 33, 539–544, doi:10.1007/s10059-012-0037-y.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133