全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Energies  2014 

Product Yields and Characteristics of Corncob Waste under Various Torrefaction Atmospheres

DOI: 10.3390/en7010013

Keywords: torrefaction, atmosphere, biomass and corncob waste, ignition temperature, hygroscopicity, product yield

Full-Text   Cite this paper   Add to My Lib

Abstract:

Biomass is a promising energy source due to its abundant, carbon-fixing, and carbon-neutral properties. Torrefaction can be employed to improve the properties of biomass in an oxygen-free or nitrogen atmosphere. This study investigates the product yields and the solid product characteristics from corncob waste torrefaction at the temperatures of 250 °C and 300 °C for 1 h. Nitrogen, carbon dioxide, and a gas mixture of air and carbon dioxide are employed as the carrier gases. The solid product characteristics approach those of coal at the higher temperature, regardless of what the carrier gases are. The fixed carbon, higher heating value, and solid and energy yields using carbon dioxide as a carrier gas at 300 °C are close to those using nitrogen. The product safety and storage properties before and after torrefaction are revealed by the measurements of ignition temperature and hygroscopicity. A higher torrefaction temperature leads to a higher ignition temperature of treated biomass, except using the mixture of air and carbon dioxide as the carrier gas. Carbon dioxide is a better carrier gas than nitrogen for biomass torrefaction, from the storage and transportation points of view.

References

[1]  Chen, W.H.; Lu, J.J. Microphysics of atmospheric carbon dioxide uptake by a cloud droplet containing a solid nucleus. J. Geophys. Res. Atmos.?2003, 108, doi:10.1029/2002JD003318.
[2]  Fiaschi, D.; Carta, R. CO2 abatement by co-firing of natural gas and biomass-derived gas in a gas turbine. Energy?2007, 32, 549–567, doi:10.1016/j.energy.2006.07.026.
[3]  Chen, W.H.; Wu, J.S. An evaluation on the rice husk and pulverized coal blends using a drop tube furnace and a thermogravimetric analyzer for application to a blast furnace. Energy?2009, 34, 1458–1466, doi:10.1016/j.energy.2009.06.033.
[4]  Chen, W.H.; Kuo, P.C. Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy?2011, 36, 803–811, doi:10.1016/j.energy.2010.12.036.
[5]  Werther, J.; Saenger, M.; Hartge, E.U.; Ogada, T.; Siagi, Z. Combustion of agricultural residues. Prog. Energy Combust.?2000, 26, 1–27, doi:10.1016/S0360-1285(99)00005-2.
[6]  Deng, J.; Wang, G.J.; Kuang, J.H.; Zhang, Y.L.; Luo, Y.H. Pretreatment of agricultural residues for co-gasification via torrefaction. J. Anal. Appl. Pyrolysis?2009, 86, 331–337, doi:10.1016/j.jaap.2009.08.006.
[7]  Uemura, Y.; Omar, W.N.; Tsutsui, T.; Yusup, S.B. Torrefaction of oil palm wastes. Fuel?2011, 90, 2585–2591, doi:10.1016/j.fuel.2011.03.021.
[8]  Phuong, L.X.; Shida, S.; Saito, Y. Effects of heat treatment on brittleness of Styrax tonkinensis wood. J. Wood Sci.?2007, 53, 181–186, doi:10.1007/s10086-006-0841-0.
[9]  Chew, J.J.; Doshi, V. Recent advances in biomass pretreatment—Torrefaction fundamentals and technology. Renew. Sustain. Energy Rev.?2011, 15, 4212–4222, doi:10.1016/j.rser.2011.09.017.
[10]  Van der Stelt, M.J.C.; Gerhauser, H.; Kiel, J.H.A.; Ptasinski, K.J. Biomass upgrading by torrefaction for the production of biofuels: A review. Biomass Bioenergy?2011, 35, 3748–3762.
[11]  Peng, J.; Bi, X.T.; Sokhansanj, S.; Lim, J. A study of particle size effect on biomass torrefaction and densification. Energy Fuels?2012, 26, 3826–3839, doi:10.1021/ef3004027.
[12]  Wu, K.T.; Tsai, C.J.; Chen, C.S.; Chen, H.W. The characteristics of torrefied microalgae. Appl. Energy?2012, 100, 52–57, doi:10.1016/j.apenergy.2012.03.002.
[13]  Bergman, P.; Boersma, A.; Kiel, J.; Prins, M.; Ptasinski, K.; Janssen, F. Torrefaction for Entrained Flow Gasification of Biomass; Energy Research Center of Netherlands: Petten, The Netherlands, 2005.
[14]  Svoboda, K.; Pohorely, M.; Hartman, M.; Martinec, J. Pretreatment and feeding of biomass for pressurized entrained flow gasification. Fuel Process. Technol.?2009, 90, 629–635, doi:10.1016/j.fuproc.2008.12.005.
[15]  Chen, W.H.; Lu, K.M.; Tsai, C.M. An experimental analysis on property and structure variations of agricultural wastes undergoing torrefaction. Appl. Energy?2012, 100, 318–325, doi:10.1016/j.apenergy.2012.05.056.
[16]  Lu, K.M.; Lee, W.J.; Chen, W.H.; Lin, T.C. Thermogravimetric analysis and kinetics of co-pyrolysis of torrefied wood and coal blends. Appl. Energy?2013, 105, 57–65, doi:10.1016/j.apenergy.2012.12.050.
[17]  Kakaras, E.; Doukelis, A.; Giannakopoulos, D.; Koumanakos, A. Economic implications of oxyfuel application in a lignite-fired power plant. Fuel?2007, 86, 2151–2158, doi:10.1016/j.fuel.2007.03.035.
[18]  Lu, K.M.; Lee, W.J.; Chen, W.H.; Liu, S.H.; Lin, T.C. Torrefaction and low temperature carbonization of oil palm fiber and eucalyptus in nitrogen and air temperatures. Bioresour. Technol.?2012, 123, 98–105, doi:10.1016/j.biortech.2012.07.096. 22940305
[19]  Uemura, Y.; Omar, W.; Othman, N.A.; Yusup, S.; Tsutsui, T. Torrefaction of oil palm EFB in the presence of oxygen. Fuel?2013, 103, 156–160, doi:10.1016/j.fuel.2011.11.018.
[20]  Chen, W.H.; Lu, K.M.; Lee, W.J.; Liu, S.H.; Lin, T.C. Non-oxidative and oxidative torrefaction characterization and SEM observations of fibrous and ligneous biomass. Appl. Energy?2014, 114, 104–113, doi:10.1016/j.apenergy.2013.09.045.
[21]  Chen, W.H.; Lu, K.M.; Lee, W.J.; Liu, S.H.; Lin, T.C. Biomass torrefaction characteristics in inert and oxidative atmospheres at various superficial velocities. Bioresour. Technol.?2013, 146, 152–160, doi:10.1016/j.biortech.2013.07.064. 23933022
[22]  Eseltine, D.; Thanapal, S.S.; Annamalai, K.; Ranjan, D. Torrefaction of woody biomass (Juniper and Mesquite) using inert and non-inert gases. Fuel?2013, 113, 379–388, doi:10.1016/j.fuel.2013.04.085.
[23]  Sarvaramini, A.; Larachi, F. Integrated biomass torrefaction—Chemical looping combustion as a method to recover torrefaction volatiles energy. Fuel?2014, 116, 158–167, doi:10.1016/j.fuel.2013.07.119.
[24]  Chen, W.H.; Hsu, H.C.; Lu, K.M.; Lee, W.C.; Lin, D.C. Thermal pretreatment of wood (Lauan) block by torrefaction and its influence on the properties of the biomass. Energy?2011, 36, 3012–3021, doi:10.1016/j.energy.2011.02.045.
[25]  Felfli, F.F.; Luengo, C.A.; Suarez, J.A.; Beaton, P.A. Wood briquette torrefaction. Energy Sustain. Dev.?2005, 9, 19–22, doi:10.1016/S0973-0826(08)60519-0.
[26]  Pimchuai, A.; Dutta, A.; Basu, P. Torrefaction of agriculture residue to enhance combustible properties. Energy Fuels?2010, 24, 4638–4645, doi:10.1021/ef901168f.
[27]  Acharjee, T.C.; Coronella, C.J.; Vasquez, V.R. Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass. Bioresour. Technol.?2011, 102, 4849–4854, doi:10.1016/j.biortech.2011.01.018. 21310606
[28]  Vasquez, V.R.; Coronella, C.J. A simple model for vapor-moisture equilibrium in biomass substrates. AIChE J.?2009, 55, 1595–1603, doi:10.1002/aic.11762.
[29]  Antal, M.J., Jr. Biomass pyrolysis: A Review of the Literature Part I—Carbohydrate Pyrolysis. In Advances in Solar Energy; Springer: New York, NY, USA, 1983; pp. 61–111.
[30]  Mansaray, K.G.; Ghaly, A.E. Thermal degradation of rice husks in nitrogen atmosphere. Bioresour. Technol.?1998, 65, 13–20, doi:10.1016/S0960-8524(98)00031-5.
[31]  Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and ligin pyrolysis. Fuel?2007, 86, 1781–1788, doi:10.1016/j.fuel.2006.12.013.
[32]  Rousset, P.; Macedo, L.; Commandre, J.M.; Moreira, A. Biomass torrefaction under different oxygen concentrations and its effect on the composition of the solid by-product. J. Anal. Appl. Pyrolysis?2012, 96, 86–91, doi:10.1016/j.jaap.2012.03.009.
[33]  Channiwala, S.A.; Parikh, P.P. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel?2002, 81, 1051–1063, doi:10.1016/S0016-2361(01)00131-4.
[34]  Bridgeman, T.G.; Jones, J.M.; Williams, A.; Waldron, D.J. An investigation of the grindability of two torrefied energy crops. Fuel?2010, 89, 3911–3918, doi:10.1016/j.fuel.2010.06.043.
[35]  Chen, W.H.; Cheng, W.Y.; Lu, K.M.; Huang, Y.P. An evaluation on improvement of pulverized biomass property for solid fuel through torrefaction. Appl. Energy?2011, 88, 3636–3644, doi:10.1016/j.apenergy.2011.03.040.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133