全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Energies  2014 

Evaluation of Biofuel Cells with Hemoglobin as Cathodic Electrocatalysts for Hydrogen Peroxide Reduction on Bare Indium-Tin-Oxide Electrodes

DOI: 10.3390/en7010001

Keywords: biofuel cell, hemoglobin, indium-tin-oxide electrode, hydrogen peroxide

Full-Text   Cite this paper   Add to My Lib

Abstract:

A biofuel cell (BFC) cathode has been developed based on direct electron transfer (DET) of hemoglobin (Hb) molecules with an indium-tin-oxide (ITO) electrode and their electrocatalysis for reduction of hydrogen peroxide (H 2O 2). In this study, the ITO-coated glass plates or porous glasses were prepared by using a chemical vapor deposition (CVD) method and examined the electrochemical characteristics of the formed ITO in pH 7.4 of phosphate buffered saline (PBS) solutions containing and not containing Hb. In half-cell measurements, the reduction current of H 2O 2 due to the electrocatalytic activity of Hb increased with decreasing electrode potential from around 0.1 V v ers us Ag|AgCl|KCl(satd.) in the PBS solution. The practical open-circuit voltage (OCV) on BFCs utilizing H 2O 2 reduction at the Hb-ITO cathode with a hydrogen (H 2) oxidation anode at a platinum (Pt) electrode was expected to be at least 0.74 V from the theoretical H 2 oxidation potential of ?0.64 V versus Ag|AgCl|KCl(satd.) in pH 7.4. The assembled single cell using the ITO-coated glass plate showed the OCV of 0.72 V and the maximum power density of 3.1 μW cm ?2. The maximum power per single cell was recorded at 21.5 μW by using the ITO-coated porous glass.

References

[1]  Leech, D.; Kavanagh, P.; Schuhmann, W. Enzymatic fuel cells: Recent progress. Electrochim. Acta?2012, 84, 223–234, doi:10.1016/j.electacta.2012.02.087.
[2]  Bullen, R.A.; Arnot, T.C.; Lakeman, J.B.; Walsh, F.C. Biofuel cells and their development. Biosens. Bioelectron.?2006, 21, 2015–2045, doi:10.1016/j.bios.2006.01.030. 16569499
[3]  Halámková, L.; Halámek, J.; Bocharova, V.; Szczupak, A.; Alfonta, L.; Katz, E. Implanted biofuel cell operating in a living snail. J. Am. Chem. Soc.?2012, 134, 5040–5043, doi:10.1021/ja211714w. 22401501
[4]  Zebda, A.; Renaud, L.; Cretin, M.; Innocent, C.; Pichot, F.; Ferrigno, R.; Tingry, S. Electrochemical performance of a glucose/oxygen microfluidic biofuel cell. J. Power Sources?2009, 193, 602–606, doi:10.1016/j.jpowsour.2009.04.066.
[5]  Nazaruk, E.; Smoliński, S.; Swatko-Ossor, M.; Ginalska, G.; Fiedurek, J.; Rogalski, J.; Bilewicz, R. Enzymatic biofuel cell based on electrodes modified with lipid liquid-crystalline cubic phases. J. Power Sources?2008, 183, 533–538, doi:10.1016/j.jpowsour.2008.05.061.
[6]  Togo, M.; Takamura, A.; Asai, T.; Kaji, H.; Nishizawa, M. Structural studies of enzyme-based microfluidic biofuel cell. J. Power Sources?2008, 178, 53–58, doi:10.1016/j.jpowsour.2007.12.052.
[7]  Horn, S.J.; Vaaje-Kolstad, G.; Westereng, B.; Eijsink, V.G.H. Novel enzymes for the degradation of cellulose. Biotechnol. Biofuels?2012, 5, doi:10.1186/1754-6834-5-45.
[8]  Drobov, R.; Kurth, D.G.; M?hwald, H.; Scheller, F.W.; Lisdat, F. Communication in a protein stack: Electron transfer between cytochrome c and bilirubin oxidase within a polyelectrolyte multilayer. Angew. Chem. Int. Ed.?2008, 47, 3000–3003, doi:10.1002/anie.200704049.
[9]  Brunel, L.; Denele, J.; Servat, K.; Kokoh, K.B.; Jolivalt, C.; Innocent, C.; Cretin, M.; Rolland, M.; Tingry, S. Oxygen transport through laccase biocathodes for a membrane-less glucose/O2 biofuel cell. Electrochem. Commun.?2007, 9, 331–336, doi:10.1016/j.elecom.2006.09.021.
[10]  Ikeda, T.; Kano, K. Bioelectrocatalysis-based application of quinoproteins and quinoprotein-containing bacterial cells in biosensors and biofuel cells. Biochim. Biophys. Acta Protein Proteomics?2003, 1647, 121–126, doi:10.1016/S1570-9639(03)00075-X.
[11]  Tarasevich, M.R.; Bogdanovskaya, V.A.; Kapustin, A.V. Nanocomposite material laccase/dispersed carbon carrier for oxygen electrode. Electrochem. Commun?2003, 5, 491–496, doi:10.1016/S1388-2481(03)00104-8.
[12]  Tsujimura, S.; Fujita, M.; Tatsumi, H.; Kano, K.; Ikeda, T. Bioelectrocatalysis-based dihydrogen/dioxygen fuel cell operating at physiological pH. Phys. Chem. Chem. Phys.?2001, 3, 1331–1335, doi:10.1039/b009539g.
[13]  Katz, E.; Willner, I.; Kotlyar, A.B. A non-compartmentalized glucose∣O2 biofuel cell by bioengineered electrode surfaces. J. Electroanal. Chem.?1999, 479, 64–68, doi:10.1016/S0022-0728(99)00425-8.
[14]  Gorton, L.; Lindgren, A.; Larsson, T.; Munteanu, F.D.; Ruzgas, T.; Gazaryan, I. Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors. Anal. Chim. Acta?1999, 400, 91–108, doi:10.1016/S0003-2670(99)00610-8.
[15]  Palmore, G.T.R.; Bertschy, H.; Bergens, S.H.; Whitesides, G.M. A methanol/dioxygen biofuel cell that uses NAD+-dependent dehydrogenases as catalysts: Application of an electro-enzymatic method to regenerate nicotinamide adenine dinucleotide at low overpotentials. J. Electroanal. Chem.?1998, 443, 155–161, doi:10.1016/S0022-0728(97)00393-8.
[16]  Fraaije, M.W.; Roubroeks, H.P.; Hagen, W.R.; van Berkel, W.J.H. Purification and characterization of an intracellular catalase-peroxidase from Penicillium Simplicissimum. Eur. J. Biochem. ?1996, 235, 192–198.
[17]  Prakash, P.A.; Yogeswaran, U.; Chen, S.-M. A review on direct electrochemistry of catalase for electrochemical sensors. Sensors?2009, 9, 1821–1844, doi:10.3390/s90301821. 22573989
[18]  Kamitaka, Y.; Tsujimura, S.; Kataoka, K.; Sakurai, T.; Ikeda, T.; Kano, K. Effects of axial ligand mutation of the type I copper site in bilirubin oxidase on direct electron transfer-type bioelectrocatalytic reduction of dioxygen. J. Electroanal. Chem.?2007, 601, 119–124, doi:10.1016/j.jelechem.2006.10.035.
[19]  Bianco, P.; Haladjian, J.; Bourdillon, C.J. Immobilization of glucose oxidase on carbon electrodes. J. Electroanal. Chem. Interfacial Electrochem.?1990, 293, 151–163, doi:10.1016/0022-0728(90)80059-F.
[20]  Chen, C.-C.; Do, J.-S.; Gu, Y. Immobilization of HRP in mesoporous silica and its application for the construction of polyaniline modified hydrogen peroxide biosensor. Sensors?2009, 9, 4635–4648, doi:10.3390/s90604635. 22408546
[21]  Scheller, F.W.; Bistolas, N.; Liu, S.; J?nchen, M.; Katterle, M.; Wollenberger, U. Thirty years of haemoglobin electrochemistry. Adv. Colloid Interface Sci.?2005, 116, 111–120, doi:10.1016/j.cis.2005.05.006. 16099417
[22]  Perutz, M.F.; Muirhead, H.; Cox, J.M.; Goaman, L.C.G.; Mathews, F.S.; McGandy, E.L.; Webb, L.E. Three-dimensional Fourier synthesis of horse oxyhaemoglobin at 2.8 ? resolution: (I) X-ray analysis. Nature?1968, 219, 29–32, doi:10.1038/219029a0. 5659617
[23]  Yin, F.; Shin, H.-K.; Kwon, Y.-S. Direct electrochemistry of hemoglobin immobilized on gold electrode by Langmuir–Blodgett technique. Biosens. Bioelectron.?2005, 21, 21–29, doi:10.1016/j.bios.2005.04.014. 15935633
[24]  Revenga-Parra, M.; Lorenzo, E.; Pariente, F. Synthesis and electrocatalytic activity towards oxidation of hydrazine of a new family of hydroquinone salophen derivatives: Application to the construction of hydrazine sensors. Sens. Actuators B?2005, 107, 678–687, doi:10.1016/j.snb.2004.11.053.
[25]  Topoglidis, E.; Astuti, Y.; Duriaux, F.; Gr?tzel, M.; Durrant, J.R. Direct electrochemistry and nitric oxide interaction of heme proteins adsorbed on nanocrystalline tin oxide electrodes. Langmuir?2003, 19, 6894–6900, doi:10.1021/la034466h.
[26]  Kawahara, N.Y.; Ohno, H. Thermal stability and electron transfer reaction of PEO-modified hemoglobin cast on an ITO electrode in polymer electrolytes. Electrochim. Acta?1998, 43, 1493–1497, doi:10.1016/S0013-4686(97)10090-1.
[27]  Shan, D.; Han, E.; Xue, H.; Cosnier, S. Self-assembled films of hemoglobin/laponite/chitosan: Application for the direct electrochemistry and catalysis to hydrogen peroxide. Biomacromolecules?2007, 8, 3041–3046, doi:10.1021/bm070329d. 17824641
[28]  Shi, G.; Sun, Z.; Liu, M.; Zhang, L.; Liu, Y.; Qu, Y.; Jin, L. Electrochemistry and electrocatalytic properties of hemoglobin in layer-by-layer films of SiO2 with vapor-surface sol-gel deposition. Anal. Chem.?2007, 79, 3581–3588, doi:10.1021/ac062034g. 17437331
[29]  Zhao, G.; Xu, J.-J.; Chen, H.-Y. Fabrication, characterization of Fe3O4 multilayer film and its application in promoting direct electron transfer of hemoglobin. Electrochem. Commun.?2006, 8, 148–154, doi:10.1016/j.elecom.2005.11.001.
[30]  Feng, J.-J.; Xu, J.-J.; Chen, H.-Y. Direct electron transfer and electrocatalysis of hemoglobin adsorbed onto electrodeposited mesoporous tungsten oxide. Electrochem. Commun.?2006, 8, 77–82, doi:10.1016/j.elecom.2005.10.029.
[31]  Zhang, J.; Oyama, M. A hydrogen peroxide sensor based on the peroxidase activity of hemoglobin immobilized on gold nanoparticles-modified ITO electrode. Electrochim. Acta?2004, 50, 85–90, doi:10.1016/j.electacta.2004.07.026.
[32]  Jia, Y.; Wood, F.; Menu, P.; Faivre, B.; Caron, A.; Alayash, A.I. Oxygen binding and oxidation reactions of human hemoglobin conjugated to carboxylate dextran. Biochim. Biophys. Acta?2004, 1672, 164–173, doi:10.1016/j.bbagen.2004.03.009. 15182936
[33]  Sun, H.; Hu, N. Voltammetric studies of hemoglobin-coated polystyrene latex bead films on pyrolytic graphite electrodes. Biophys. Chem.?2004, 110, 297–308, doi:10.1016/j.bpc.2004.03.005. 15228965
[34]  Gu, H.-Y.; Yu, A.-M.; Chen, H.-Y. Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid–cysteamine-modified gold electrode. J. Electroanal. Chem.?2001, 516, 119–126, doi:10.1016/S0022-0728(01)00669-6.
[35]  Ayato, Y.; Takatsu, A.; Kato, K.; Matsuda, N. Direct electrochemistry of hemoglobin molecules adsorbed on bare indium tin oxide electrode surfaces. Jpn. J. Appl. Phys.?2008, 47, 1333–1336, doi:10.1143/JJAP.47.1333.
[36]  Ayato, Y.; Itahashi, T.; Matsuda, N. Direct electron transfer of hemoglobin molecules on bare ITO electrodes. Chem. Lett.?2007, 36, 406–407, doi:10.1246/cl.2007.406.
[37]  Ayato, Y.; Yamagiwa, K.; Shiroishi, H.; Kuwano, J. Direct electron transfer and electrocatalysis of hemoglobin on ITO nanoparticle electrodes. ECS Trans.?2013, 50, 1–10.
[38]  Ayato, Y.; Matsuda, N. A novel biofuel cell based on direct electron transfer utilizing enzymatic activity of hemoglobin at indium-tin-oxide electrodes in cathodic process. Chem. Lett.?2009, 38, 504–505, doi:10.1246/cl.2009.504.
[39]  Sawada, Y.; Kobayashi, C.; Seki, S.; Funakubo, H. Highly-conducting indium-tin-oxide transparent films fabricated by spray CVD using ethanol solution of indium (III) chloride and tin (II) chloride. Thin Solid Films?2002, 409, 46–50, doi:10.1016/S0040-6090(02)00102-5.
[40]  Kobayashi, H.; Ishida, T.; Nakato, Y.; Tsubomura, H. Mechanism of carrier transport in highly efficient solar cells having indium tin oxide/Si junctions. J. Appl. Phys.?1991, 69, 1736–1743, doi:10.1063/1.347220.
[41]  Ayato, Y.; Kunimatsu, K.; Osawa, M.; Okada, T. Study of Pt electrode/Nafion ionomer interface in HClO4 by in situ surface-enhanced FTIR spectroscopy. J. Electrochem. Soc.?2006, 153, A203–A209, doi:10.1149/1.2137648.
[42]  Ayato, Y.; Okada, T.; Yamazaki, Y. Characterization of bipolar ion exchange membrane for polymer electrolyte fuel cells. Electrochemistry?2003, 71, 313–317.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133