全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Energies  2013 

Hour-Ahead Wind Speed and Power Forecasting Using Empirical Mode Decomposition

DOI: 10.3390/en6126137

Keywords: wind power, empirical mode decomposition, intrinsic mode function, artificial neural network

Full-Text   Cite this paper   Add to My Lib

Abstract:

Operation of wind power generation in a large farm is quite challenging in a smart grid owing to uncertain weather conditions. Consequently, operators must accurately forecast wind speed/power in the dispatch center to carry out unit commitment, real power scheduling and economic dispatch. This work presents a novel method based on the integration of empirical mode decomposition (EMD) with artificial neural networks (ANN) to forecast the short-term (1 h ahead) wind speed/power. First, significant parameters for training the ANN are identified using the correlation coefficients. These significant parameters serve as inputs of the ANN. Owing to the volatile and intermittent wind speed/power, the historical time series of wind speed/power is decomposed into several intrinsic mode functions (IMFs) and a residual function through EMD. Each IMF becomes less volatile and therefore increases the accuracy of the neural network. The final forecasting results are achieved by aggregating all individual forecasting results from all IMFs and their corresponding residual functions. Real data related to the wind speed and wind power measured at a wind-turbine generator in Taiwan are used for simulation. The wind speed forecasting and wind power forecasting for the four seasons are studied. Comparative studies between the proposed method and traditional methods ( i.e., artificial neural network without EMD, autoregressive integrated moving average (ARIMA), and persistence method) are also introduced.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133