全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Electronics  2013 

Graphene and Graphene Nanomesh Spintronics

DOI: 10.3390/electronics2040368

Keywords: spintronics, graphene, edges, spin polarization, ferromagnetism, magnetoresistance, rare-metal free

Full-Text   Cite this paper   Add to My Lib

Abstract:

Spintronics, which manipulate spins but not electron charge, are highly valued as energy and thermal dissipationless systems. A variety of materials are challenging the realization of spintronic devices. Among those, graphene, a carbon mono-atomic layer, is very promising for efficient spin manipulation and the creation of a full spectrum of beyond-CMOS spin-based nano-devices. In the present article, the recent advancements in graphene spintronics are reviewed, introducing the observation of spin coherence and the spin Hall effect. Some research has reported the strong spin coherence of graphene. Avoiding undesirable influences from the substrate are crucial. Magnetism and spintronics arising from graphene edges are reviewed based on my previous results. In spite of carbon-based material with only sp2 bonds, the zigzag-type atomic structure of graphene edges theoretically produces spontaneous spin polarization of electrons due to mutual Coulomb interaction of extremely high electron density of states (edge states) localizing at the flat energy band. We fabricate honeycomb-like arrays of low-defect hexagonal nanopores (graphene nanomeshes; GNMs) on graphenes, which produce a large amount of zigzag pore edges, by using a nonlithographic method (nanoporous alumina templates) and critical temperature annealing under high vacuum and hydrogen atmosphere. We observe large-magnitude ferromagnetism, which arises from polarized spins localizing at the hydrogen-terminated zigzag-nanopore edges of the GNMs, even at room temperature. Moreover, spin pumping effects are found for magnetic fields applied in parallel with the few-layer GNM planes. Strong spin coherence and spontaneously polarized edge spins of graphene can be expected to lead to novel spintronics with invisible, flexible, and ultra-light (wearable) features.

References

[1]  Baibich, M.N.; Broto, J.M.; Fert, A.; Van Dau, F.N.; Petroff, F.; Etienne, P.; Creuzet, G.; Friederich, A.; Chazelas, J. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 1988, 61, 2472, doi:10.1103/PhysRevLett.61.2472.
[2]  Moodera, J.S.; Kinder, L.R.; Wong, T.M.; Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 1995, 74, 3273–3276, doi:10.1103/PhysRevLett.74.3273.
[3]  Yuasa, S.; Nagahama, T.; Fukushima, A.; Suzuki, Y.; Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mat. 2004, 3, 868–871, doi:10.1038/nmat1257.
[4]  Hayakawa, J.; Ikeda, S.; Lee, Y.M.; Matsukura, F.; Ohno, H. Effect of high annealing temperature on giant tunnel magnetoresistance ratio of magnetic tunnel junctions. Appl. Phys. Lett. 2006, 89, 232510, doi:10.1063/1.2402904.
[5]  Munekata, H.; Ohno, H.; von Molnar, S.; Segmüller, A.; Chang, L.L.; Esaki, L. Diluted magnetic III-V semiconductors. Phys. Rev. Lett. 1989, 63, 1849–1852, doi:10.1103/PhysRevLett.63.1849.
[6]  Ohno, H.; Munekata, H.; Penney, T.; von Molnár, S.; Chang, L.L. Magnetotransport properties of p-type (In,Mn)As diluted magnetic III-V semiconductors. Phys. Rev. Lett. 1992, 68, 2664–2667, doi:10.1103/PhysRevLett.68.2664.
[7]  Hai, P.N.; Ohya, S.; Tanaka, M.; Barnes, S.E.; Maekawa, S. Electromotive force and huge magnetoresistance in magnetic tunnel junctions. Nature 2009, 458, 489–492, doi:10.1038/nature07879.
[8]  Lundeberg, M.B.; Yang, R.; Renard, J.; Folk, J.A. Defect-mediated spin relaxation and dephasing in graphene. Phys. Rev. Lett. 2013, 110, 156601, doi:10.1103/PhysRevLett.110.156601.
[9]  Sun, Z.; Raji, A.O.; Zhu, Y.; Xiang, C.; Yan, Z.; Kittrell, C.; Samuel, E.L.G.; Tour, J.M. Large-area Bernal-stacked bi-, tri-, and tetralayer grapheme. Nano 2012, 6, 7615.
[10]  Tombros, N.; Jozsa, C.; Popinciuc, M.; Jonkman, H.T.; Van Wees, B.J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 2007, 448, 571–574, doi:10.1038/nature06037.
[11]  Tombros, N.; Tanabe, S.; Veligura, A.; Jozsa, C.; Popinciuc, M.; Jonkman, H.T.; Van Wees, B.J. Anisotropic spin relaxation in graphene. Phys. Rev. Lett. 2008, 101, 046601.
[12]  Abanin, D.A.; Morozov, S.V.; Ponomarenko, L.A.; Gorbachev, R.V.; Mayorov, A.S.; Katsnelson, M.I.; Watanabe, K.; Taniguchi, T.; Novoselov, K.S.; Levitov, L.S. Giant nonlocality near the Dirac point in graphene. Science 2011, 332, 328–330, doi:10.1126/science.1199595.
[13]  Murakami, S.; Nagaosa, N.; Zhang, S. Dissipationless quantum spin current at room temperature. Science 2003, 301, 1348–1351, doi:10.1126/science.1087128.
[14]  Kane, C.L.; Mele, E.J. Quantum spin hall effect in graphene. Phys. Rev. Lett. 2005, 95, 226801–226804, doi:10.1103/PhysRevLett.95.226801.
[15]  Kane, C.L. Graphene and the quantum spin hall effect. J. Mod. Phys. B 2007, 21, 1155, doi:10.1142/S0217979207042598.
[16]  Schmidt, M.J.; Loss, D. Edge states and enhanced spin-orbit interaction at graphene/graphane interfaces. Phys. Rev. B 2010, 81, 165439, doi:10.1103/PhysRevB.81.165439.
[17]  Balakrishnan, J.; Koon, G.K.W.; Jaiswal, M.; Neto, A.H.C.; ?zyilmaz, B. Colossal enhancement of spin-orbit coupling in weakly hydrogenated graphene. Nat. Phys. 2013, 9, 284–287, doi:10.1038/nphys2576.
[18]  Nakada, K.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M.S. Edge state in graphene ribbons: Nanometer size effect and edge shape depend. Phys. Rev. B 1996, 54, 17954–17961, doi:10.1103/PhysRevB.54.17954.
[19]  Fujita, M.; Wakabayashi, K.; Nakada, K.; Kusakabe, K. Peculiar localized state at zigzag graphite edge. J. Phys. Soc. Jpn. 1996, 65, 1920–1923.
[20]  Kusakabe, K.; Maruyama, M. Magnetic nanographite. Phys. Rev. B 2003, 67, 092406, doi:10.1103/PhysRevB.67.092406.
[21]  Okada, S.; Oshiyama, A. Magnetic Ordering in Hexagonally Bonded Sheets with First-Row Elements. Phys. Rev. Lett. 2001, 87, 146803, doi:10.1103/PhysRevLett.87.146803.
[22]  Lee, H.; Son, Y.; Park, N.; Han, S.; Yu, J. Magnetic ordering at the edges of graphitic fragments: Magnetic tail interactions between the edge-localized states. Phys. Rev. B 2005, 72, 174431, doi:10.1103/PhysRevB.72.174431.
[23]  Veiga, R.G.A.; Miwa, R.H.; Srivastava, G.P. Quenching of local magnetic moment in oxygen adsorbed graphene nanoribbons. J. Chem. Phys. 2008, 128, 201101, doi:10.1063/1.2937453.
[24]  Lee, H.; Park, N.; Son, Y.; Han, S.; Yu, J. Ferromagnetism at the edges of the stacked graphitic fragments: An ab initio study. Chem. Phys. Lett. 2004, 398, 207–211, doi:10.1016/j.cplett.2004.09.069.
[25]  Enoki, T.; Takai, K. The edge state of nanographene and the magnetism of the edge-state spins. Sol. Stat. Comm. 2009, 149, 1144–1150, doi:10.1016/j.ssc.2009.02.054.
[26]  Son, Y.; Cohen, M.L.; Louie, S.G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803, doi:10.1103/PhysRevLett.97.216803.
[27]  Yang, L.; Park, C.; Son, Y.; Cohen, M.L.; Louie, S.G. Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 2007, 99, 186801, doi:10.1103/PhysRevLett.99.186801.
[28]  Shima, N.; Aoki, H. Electronic structure of super-honeycomb systems: A peculiar realization of semimetal/semiconductor classes and ferromagnetism. Phys. Rev. Lett. 1993, 71, 4389–4392, doi:10.1103/PhysRevLett.71.4389.
[29]  Rosser, J.F.; Palacios, J.J. Magnetism in Graphene Nanoislands. Phys. Rev. Lett. 2007, 99, 177204, doi:10.1103/PhysRevLett.99.177204.
[30]  Jia, X.; Hofmann, M.; Meunier, V.; Sumpter, B.G.; Campos-Delgado, J.; Romo-Herrera, J.M.; Son, H.; Hsieh, Y.; Reina, A.; Kong, J. Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science 2009, 323, 1701–1705, doi:10.1126/science.1166862.
[31]  Girit, ?.?.; Meyer, J.C.; Erni, R.; Rossell, M.D.; Kisielowski, C.; Yang, L.; Park, C.; Crommie, M.F.; Cohen, M.L.; Louie, S.G. Graphene at the edge: Stability and dynamics. Science 2009, 323, 1705–1708, doi:10.1126/science.1166999.
[32]  Shimizu, T.; Haruyama, J.; Marcano, D.C.; Kosinkin, D.V.; Tour, J.M.; Hirose, K.; Suenaga, K. Large intrinsic energy bandgaps in annealed nanotube-derived graphene nanoribbons. Nat. Nanotech. 2011, 6, 45–50, doi:10.1038/nnano.2010.249.
[33]  Han, M.Y.; Brant, J.C.; Kim, P. Electron transport in disordered graphene nanoribbons. Phys. Rev. Lett. 2010, 104, 056801, doi:10.1103/PhysRevLett.104.056801.
[34]  Wang, X.; Ouyang, Y.; Li, X.; Wang, H.; Guo, J.; Dai, H. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 2008, 100, 206803, doi:10.1103/PhysRevLett.100.206803.
[35]  Krauss, B.; Nemes-Incze, P.; Skakalova, V.; Biro, L.P.; von Klitzing, K.; Smet, J.H. Raman scattering at pure graphene zigzag edges. Nano Lett. 2010, 10, 4544–4548, doi:10.1021/nl102526s.
[36]  Bai, J.; Zhong, X.; Jiang, S.; Huang, Y.; Duan, X. Graphene nanomesh. Nat. Nanotech. 2010, 5, 190–194, doi:10.1038/nnano.2010.8.
[37]  Son, Y.W.; Cohen, M.L.; Louie, S.G. Half-metallic graphene nanoribbons. Nature 2006, 444, 347–349, doi:10.1038/nature05180.
[38]  Otani, M.; Koshino, M.; Takagi, Y.; Okada, S. Intrinsic magnetic moment on (0001) surfaces of rhombohedral graphitee. Phys. Rev. B 2010, 81, 161403 (R), doi:10.1103/PhysRevB.81.161403.
[39]  Yang, H.; Chshiev, M.; Boukhvalov, D.W.; Waintal, X.; Roche, S. Inducing and optimizing magnetism in graphene nanomeshes. Phys. Rev. B 2011, 84, 214404, doi:10.1103/PhysRevB.84.214404.
[40]  You, Y.M.; Ni, Z.H.; Yu, T.; Shen, Z.X. Edge chirality determination of graphene by Raman spectroscopy. Appl. Phys. Lett. 2008, 93, 163112, doi:10.1063/1.3005599.
[41]  Soriano, D.; Leconte, N.; Ordejón, P.; Charlier, J.; Palacios, J.; Roche, S. Magnetoresistance and magnetic ordering fingerprints in hydrogenated graphene. Phys. Rev. Lett. 2011, 107, 016602, doi:10.1103/PhysRevLett.107.016602.
[42]  Shimizu, T.; Nakamura, J.; Tada, K.; Yagi, Y.; Haruyama, J. Magnetoresistance oscillations arising from edge-localized electrons in low-defect graphene antidot-lattices. Appl. Phys. Lett. 2012, 100, 023104, doi:10.1063/1.3675547.
[43]  Tada, K.; Hashimoto, T.; Haruyama, J.; Yang, H.; Chshiev, M. Spontaneous spin polarization and spin pumping effect on edges of graphene antidot lattices. Phys. Status Solidi 2012, 249, 2491–2496, doi:10.1002/pssb.201200042.
[44]  Ning, G.; Xu, C.; Hao, L.; Kazakova, O.; Fan, Z.; Wang, H.; Wang, K.; Gao, J.; Qian, W.; Wei, F. Ferromagnetism in nanomesh graphene. Carbon 2013, 51, 390–396, doi:10.1016/j.carbon.2012.08.072.
[45]  Nair, R.R.; Sepioni, M.; Tsai, I.; Lehtinen, O.; Keinonen, J.; Krasheninnikov, A.V.; Thomson, T.; Geim, A.K.; Grigorieva, I.V. Spin-half paramagnetism in graphene induced by point defects. Nat. Phys. 2012, 8, 199–202, doi:10.1038/nphys2183.
[46]  Rao, S.S.; Jammalamadaka, S.N.; Stesmans, A.; Moshchalkov, V.V.; Van Tol, J.; Kosynkin, D.V.; Higginbotham-Duque, A.; Tour, J.M. Ferromagnetism in graphene nanoribbons: Split versus oxidative unzipped ribbons. Nano Lett. 2012, 12, 1210–1217, doi:10.1021/nl203512c.
[47]  Prével, B.; Benoit, J.-M.; Bardotti, L.; Mélinon, P.; Ouerghi, A.; Lucot, D.; Bourhis, E.; Gierak, J. Nanostructuring graphene on SiC by focused ion beam: Effect of the ion fluence. Appl. Phys. Lett. 2011, 98, 83116, doi:10.1063/1.3559229.
[48]  Takesue, I.; Haruyama, J.; Kobayashi, N.; Chiashi, S.; Maruyama, S.; Sugai, T.; Shinohara, H. Superconductivity in entirely end-bonded multiwalled carbon nanotubes. Phys. Rev. Lett. 2006, 96, 057001, doi:10.1103/PhysRevLett.96.057001.
[49]  Niimi, Y.; Matsui, T.; Kambara, H.; Tagami, K.; Tsukada, M.; Fukuyama, H. Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges. Phys. Rev. B 2006, 73, 085421, doi:10.1103/PhysRevB.73.085421.
[50]  Asano, H.; Muraki, S.; Endo, H.; Bandow, S.; Iijima, S. Strong magnetism observed in carbon nanoparticles produced by the laser vaporization of a carbon pellet in hydrogen-containing Ar balance gas. J. Phys. 2010, 22, 334209.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133