Species distribution modeling is used in applied ecology; for example in predicting the consequences of global change. However, questions still remain about the robustness of model predictions. Here we estimate effects of landscape spatial configuration and organism flight ability—factors related to dispersal—on the accuracy of species distribution models. Distribution models were developed for 129 phytoplankton taxa, 164 littoral invertebrate taxa and 44 profundal invertebrate taxa sampled in 105 Swedish lakes, using six different modeling techniques (generalized linear models (GLM), multivariate adaptive regression splines (MARS), classification tree analysis (CTA), mixture discriminant analysis (MDA), generalized boosting models (GBM) and random forests (RF)). Model accuracy was not affected by dispersal ability ( i.e., invertebrate flight ability), but the accuracy of phytoplankton assemblage predictions and, to a lesser extent, littoral invertebrate assemblages were related to ecosystem size and connectivity. Although no general pattern across species or spatial configuration was evident from our study, we recommend that dispersal and spatial configuration of ecosystems should be considered when developing species distribution models.
References
[1]
Moore, K.A.; Elmendorf, S.C. Propagule vs. niche limitation: untangling the mechanisms behind plant species? distributions. Ecol. Lett. 2006, 9, 797–804, doi:10.1111/j.1461-0248.2006.00923.x.
[2]
Thuiller, W.; Lavorel, S.; Araujo, M.B.; Sykes, M.T.; Prentice, I.C. Climate change threats to plant diversity in Europe. Proc. Natl. Acad. Sci. USA 2005, 102, 8245–8250, doi:10.1073/pnas.0409902102.
[3]
Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, B.F.N.; de Siqueira, M.F.; Grainger, A.; Hannah, L.; et al. Extinction risk from climate change. Nature 2004, 427, 145–148, doi:10.1038/nature02121.
[4]
Peterson, A.T.; Vieglais, D.A. Predicting species invasions using ecological niche modeling: new approaches from bioinformatics attack a pressing problem. Bioscience 2001, 51, 363–371, doi:10.1641/0006-3568(2001)051[0363:PSIUEN]2.0.CO;2.
[5]
Hawkins, C.P.; Norris, R.H.; Hogue, J.N.; Feminella, J.W. Development and evaluation of predictive models for measuring the biological integrity of streams. Ecol. Appl. 2000, 10, 1456–1477, doi:10.1890/1051-0761(2000)010[1456:DAEOPM]2.0.CO;2.
Leibold, M.A.; Holyoak, M.; Mouquet, N.; Amarasekare, P.; Chase, J.M.; Hoopes, M.F.; Holt, R.D.; Shurin, J.B.; Law, R.; Tilman, D.; et al. The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 2004, 7, 601–613, doi:10.1111/j.1461-0248.2004.00608.x.
[8]
Elith, J.; Graham, C.H.; Anderson, R.P.; Dudik, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; Li, J.; et al. Novel methods improve prediction of species? distributions from occurrence data. Ecography 2006, 29, 129–151, doi:10.1111/j.2006.0906-7590.04596.x.
[9]
Guisan, A.; Zimmermann, N.E.; Elith, J.; Graham, C.H.; Phillips, S.; Peterson, A.T. What matters for predicting the occurrences of trees: Techniques, data, or species? characteristics? Eco. Monogr. 2007, 77, 615–630, doi:10.1890/06-1060.1.
[10]
Thuiller, W. BIOMOD-optimizing predictions of species distributions and projecting potential future shifts under global change. Global Change Biol. 2003, 9, 1353–1362, doi:10.1046/j.1365-2486.2003.00666.x.
[11]
Marmion, M.; Parviainen, M.; Luoto, M.; Heikkinen, R.K.; Thuiller, W. Evaluation of consensus methods in predictive species distribution modelling. Divers. Distrib. 2009, 15, 59–69, doi:10.1111/j.1472-4642.2008.00491.x.
[12]
Kadmon, R.; Farber, O.; Danin, A. A systematic analysis of factors affecting the performance of climatic envelope models. Ecol. Appl. 2003, 13, 853–867, doi:10.1890/1051-0761(2003)013[0853:ASAOFA]2.0.CO;2.
[13]
Newbold, T.; Reader, T.; Zalat, S.; El-Gabbas, A.; Gilbert, F. Effect of characteristics of butterfly species on the accuracy of distribution models in an arid environment. Biodiver. Conserv. 2009, 18, 3629–3641, doi:10.1007/s10531-009-9668-5.
[14]
G?the, E.; Angeler, D.G.; Sandin, L. Metacommunity structure in a small boreal stream network. J. Anim. Ecol. 2013, 82, 449–458, doi:10.1111/1365-2656.12004.
[15]
MacArthur, R.H.; Wilson, E.O. The Theory of Island Biogeography; Princeton University Press: Princeton, NJ, USA, 1967.
[16]
Allouche, O.; Steinitz, O.; Rotem, D.; Rosenfeld, A.; Kadmon, R. Incorporating distance constraints into species distribution models. J. Appl. Ecol. 2008, 45, 599–609, doi:10.1111/j.1365-2664.2007.01445.x.
[17]
Vaughan, I.P.; Ormerod, S.J. The continuing challenges of testing species distribution models. J. Appl. Ecol. 2005, 42, 720–730, doi:10.1111/j.1365-2664.2005.01052.x.
[18]
Vaughan, I.P.; Ormerod, S.J. Increasing the value of principal components analysis for simplifying ecological data: a case study with rivers and river birds. J. Appl. Ecol. 2005, 42, 487–497, doi:10.1111/j.1365-2664.2005.01038.x.
[19]
Johnson, R.K. Regional Representativeness of Swedish Reference Lakes. Environ. Manage. 1999, 23, 115–124, doi:10.1007/s002679900172.
[20]
Throndsen, J. Preservation and storage. In Phytoplankton Manual Monographs on Oceanographic Methodology; Sournia, A., Ed.; UNESCO: Paris, France, 1978; pp. 70–71.
[21]
Olrik, K.P.; Blomqvist, P.; Brettum, P.; Cronberg, G.; Eloranta, P. Methods for Quantitative Assessment of Phytoplankton in Freshwaters, Part I; Swedish Environmental Protection Agency: Stockholm, Sweden, 1989.
[22]
European Committee for Standardization. Water Quality-Methods for Biological Sampling-Guidance on Handnet Sampling of Aquatic Benthic Macro-Invertebrates; CEN: Brussels, Belgium, 1994.
[23]
Wilander, A.; Johnson, R.K.; Goedkoop, W. Riksinventering 2000: En synoptisk studie av vattenkemi och bottenfauna i svenska sj?ar och vattendrag (in Swedish); Department of Environmental Assessment: Uppsala, Sweden, 2003.
[24]
National land survey of Sweden. Available online: www.lantmateriet.se/ (accessed on 1 April 2013).
[25]
Swedish institute for metrology and hydrology. Available online: www.smhi.se/ (accessed on 1 April 2013).
[26]
Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611.
[27]
ESRI homepage. Available online: http://www.esri.com/ (accessed on 1 April 2013).
[28]
Heymann, Y.; Steenmans, C.; Croissille, G.; Bossard, M. Corine Land Cover. Technical Guide; Office for Official Publications of the European Communities: Luxembourg, Luxembourg, 1994.
[29]
Thuiller, W.; Lafourcade, B.; Engler, R.; Araújo, M.B. BIOMOD-a platform for ensemble forecasting of species distributions. Ecography 2009, 32, 369–373, doi:10.1111/j.1600-0587.2008.05742.x.
[30]
R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2007.
[31]
Jiménez-Valverde, A.; Lobo, J.M. Threshold criteria for conversion of probability of species presence to either–or presence–absence. Acta Oecol. 2007, 31, 361–369, doi:10.1016/j.actao.2007.02.001.
[32]
Illies, J. Limnofauna Europaea; Gustav Fisher Verlag: Stuttgart, Germany, 1978.
[33]
NCAR-Research Application Program. Verification: Forecast verification utilities. Available online: http://CRAN.R-project.org/package=verification/ (accessed on 1 April 2013).
[34]
JMP homepage. Available online: http://www.jmp.com/ (accessed on 1 April 2013).
Vanschoenwinkel, B.; Gielen, S.; Seaman, M.; Brendonck, L. Wind mediated dispersal of freshwater invertebrates in a rock pool metacommunity: differences in dispersal capacities and modes. Hydrobiologia 2009, 635, 363–372, doi:10.1007/s10750-009-9929-z.
[37]
Hanspach, J.; Kuhn, I.; Pompe, S.; Klotz, S. Predictive performance of plant species distribution models depends on species traits. Perspect Plant Ecol. 2010, 12, 219–225, doi:10.1016/j.ppees.2010.04.002.
[38]
Poyry, J.; Luoto, M.; Heikkinen, R.K.; Saarinen, K. Species traits are associated with the quality of bioclimatic models. Global Ecol. Biogeogr. 2008, 17, 403–414, doi:10.1111/j.1466-8238.2007.00373.x.
[39]
Raybould, A.F.; Clarke, R.T.; Bond, J.M.; Welters, R.E.; Gliddon, C.J. Inferring patterns of dispersal from allele frequency data. In Dispersal ecology; Bullock, J.M., Kenward, R.E., Hails, R.S., Eds.; Blackwell Science: Oxford, UK, 2002; pp. 89–110.