全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Diversity  2013 

In Situ Ecophysiology of Microbial Biofilm Communities Analyzed by CMEIAS Computer-Assisted Microscopy at Single-Cell Resolution

DOI: 10.3390/d5030426

Keywords: allometric scaling, biofilm, biogeography, CMEIAS image analysis, community analysis, computer-assisted microscopy, microbial ecophysiology, morphological diversity, single-cell microbiology, spatial ecology

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper describes the utility of CMEIAS (Center for Microbial Ecology Image Analysis System) computer-assisted microscopy to extract data from accurately segmented images that provide 63 different insights into the ecophysiology of microbial populations and communities within biofilms and other habitats. Topics include quantitative assessments of: (i) morphological diversity as an indicator of impacts that substratum physicochemistries have on biofilm community structure and dominance-rarity relationships among populations; (ii) morphotype-specific distributions of biovolume body size that relate microbial allometric scaling, metabolic activity and growth physiology; (iii)?fractal geometry of optimal cellular positioning for efficient utilization of allocated nutrient resources; (iv) morphotype-specific stress responses to starvation, environmental disturbance and bacteriovory predation; (v) patterns of spatial distribution indicating positive and negative cell–cell interactions affecting their colonization behavior; and (vi)?significant methodological improvements to increase the accuracy of color-discriminated ecophysiology, e.g., differentiation of cell viability based on cell membrane integrity, cellular respiratory activity, phylogenetically differentiated substrate utilization, and N-acyl homoserine lactone-mediated cell–cell communication by bacteria while colonizing plant roots. The intensity of these ecophysiological attributes commonly varies at the individual cell level, emphasizing the importance of analyzing them at single-cell resolution and the proper spatial scale at which they occur in situ.

References

[1]  CMEIAS Center for Microbial Ecology Image Analysis System. Available online: http://cme.msu.edu/cmeias/ (accessed on 22 April 2013).
[2]  Dazzo, F.B.; Liu, J.; Gross, C.; Reddy, C.; Monosmith, C.; Philips, N.; Radek, C.; Klemmer, K.; Zhou, J.; Smith, P.; et al. CMEIAS v3.10: Advanced Computational Tools of Image Analysis Software Designed to Strengthen Microscopy-Based Approaches for Understanding Microbial Ecology. In 2013 All Scientists Meeting: Kellogg Biological Station Long-Term Ecological Research Program; Michigan State University: East Lansing, MI, USA, 2013.
[3]  Liu, J.; Dazzo, F.B.; Glagoleva, O.; Yu, B.; Jain, A. CMEIAS: a computer-aided system for the image analysis of bacterial morphotypes in microbial communities. Microbial Ecol. 2001, 41, 173–194.
[4]  Henrici, A.T. Studies of freshwater bacteria. I. A direct microscopic technique. J. Bacteriol. 1933, 25, 277–286.
[5]  Roberts, A.; Withers, P. StatistiXL. Version 1.10; Broadway-Nedlands: Kalamunda, Australia, 2012.
[6]  Towner, H. EcoStat. Version 1.03; Trinity Software Inc.: Campton, NH, USA, 1999.
[7]  Krebs, C. Ecological Methodology. Version 7.2; Setauket: New York, NY, USA, 2011.
[8]  Hammer, O.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 1–9.
[9]  Species Diversity & Richness IV. Version 4.1.2.1554, Pisces Software, Hants, UK, 2007.
[10]  GS+. Version7.0. Gamma Design Software LLC. Plainwell, MI, USA, 2004.
[11]  Freese, H.M.; Karsten, U.; Schumann, R. Bacterial abundance, activity, and viability in the eutrophic river Warnow, Northeast Germany. Microbial Ecol. 2006, 51, 117–127, doi:10.1007/s00248-005-0091-5.
[12]  Gantner, S.; Schmid, M.; Dürr, C.; Schuhegger, R.; Steidle, A.; Hutzler, P.R.; Langebartels, C.; Eberl, L.; Hartmann, A.; Dazzo, F.B. In situ spatial scale of calling distances and population density-independent N-acylhomoserine lactone mediated communication by rhizobacteria colonized on plant roots. FEMS Microbiol. Ecol. 2006, 56, 188–194.
[13]  Daims, H.; Nielsen, J.; Nielsen, P.; Schleifer, K.H.; Wagner, M. In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Appl. Environ. Microbiol. 2001, 67, 5273–5284, doi:10.1128/AEM.67.11.5273-5284.2001.
[14]  Gross, C.A.; Reddy, C.; Dazzo, F.B. CMEIAS color segmentation: an improved computing technology to process color images for quantitative microbial ecology studies at single-cell resolution. Microbial Ecol. 2010, 59, 400–414, doi:10.1007/s00248-009-9616-7.
[15]  Folland, I.; Trione, D.; Dazzo, F.B. Accuracy of biovolume formulas for CMEIAS computer-assisted microscopy and body size analysis of morphologically diverse microbial populations and communities. Microbial Ecol. 2013. submitted for publication.
[16]  Magurran, A.E. Measuring Biological Diversity; Blackwell Publishing: Malden, MA, USA, 2004.
[17]  Bergey’s Manual of Determinative Bacteriology, 9th; Holt, J., Krieg, N., Sneath, P., Staley, J., Williams, S., Eds.; Williams and Wilkins: Baltimore, MD, USA, 1996.
[18]  Hendrick, D.; Peacock, A.; White, D.C. Lipid analyses for viable microbial biomass, community composition, metabolic status, and in situ metabolism. In Manual of Environmental Microbiology, 3rd; Hurst, C., Crawford, R., Garland, J., Lipson, D., Mills, A., Stetzenbach, L., Eds.; American Society for Microbiology Press: Washington, DC, USA, 2007; pp. 112–125.
[19]  Kunitsky, C.; Osterhout, G.; Sasser, M. Identification of microorganisms using fatty acid methyl ester [FAME] analysis and the MIDI Sherlock Microbial Identification System. In Encyclopedia of Rapid Microbiological Methods, 2nd; Miller, M., Ed.; Davis Healthcare International Publishers: River Grove, IL, USA, 2005; pp. 1–17.
[20]  Bochner, B. Biolog: modern phenotypic microbial identification. In Encyclopedia of Rapid Microbiological Methods, 2nd; Miller, M., Ed.; Davis Healthcare International Publishers: River Grove, IL, USA, 2005; pp. 55–73.
[21]  Collins, G.; Kavanagh, S.; McHugh, S.; Connaughton, S.; Kearney, A.; Rice, O.; Carrigg, C.; Scully, C.; Bhreathnach, N.; Mahony, T.; et al. Assessing the black box of microbial diversity and ecophysiology: recent advances through polyphasic experiments. J. Environ. Sci. HealthPart A 2006, 41, 897–922, doi:10.1080/10934520600614546.
[22]  Liu, W.; Stahl, D. Molecular approaches for the measurement of density, diversity and phylogeny. In Manual of Environmental Microbiology, 3rd; Hurst, C., Crawford, R., Garland, J., Lipson, D., Mills, A., Stetzenbach, L., Eds.; American Society for Microbiology Press: Washington, DC, USA, 2007; pp. 139–156.
[23]  Ribosomal Database Project. Available online: http://rdp.cme.msu.edu/ (accessed on 22 April 2013).
[24]  Hashsham, S.; Fernandez, A.; Dollhopf, S.; Dazzo, F.B.; Hickey, R.; Tiedje, J.M.; Criddle, C.S. Parallel processing of substrate correlates with greater functional stability in methanogenic bioreactor communities perturbed by glucose. Appl. Environ. Microbiol. 2000, 66, 4050–4057, doi:10.1128/AEM.66.9.4050-4057.2000.
[25]  Fernandez, A.; Hashsham, S.; Dollhopf, D.; Raskin, L.; Glagoleva, O.; Dazzo, F.B.; Hickey, R.; Tiedje, J.M.; Criddle, C.S. Flexible community structure correlates with stable community function in methanogenic bioreactor communities perturbed by glucose. Appl. Environ. Microbiol. 2000, 66, 4058–4067, doi:10.1128/AEM.66.9.4058-4067.2000.
[26]  Ritchie, M.E. Scale, Heterogeneity, and the Structure and Diversity of Ecological Communities; Princeton University Press: Princeton, NJ, USA, 2010.
[27]  Yoshiyama, K.; Klausmeier, C.A. Optimal cell size for resource uptake in fluids: a new facet of resource competition. Am. Nat. 2008, 171, 59–70, doi:10.1086/523950.
[28]  Lambshead, P.J.D.; Platt, H.M.; Shaw, K.M. The detection of differences among assemblages of marine benthic species based on an assessment of dominance and diversity. J. Nat. Hist. 1983, 17, 859–874, doi:10.1080/00222938300770671.
[29]  Gaston, K.J. Rarity; Springer: Danvers, MA, USA, 1994.
[30]  West, G.B.; Woodruff, W.H.; Brown, J.H. Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals. Proc. Natl. Acad. Sci. USA 2002, 99, 2473–2478, doi:10.1073/pnas.012579799.
[31]  Baker, R.M.; Singleton, F.L.; Hood, M.A. Effects of nutrient deprivation on Vibrio cholerae. Appl. Environ. Microbiol. 1983, 46, 930–940.
[32]  Holmquist, L.; Kjelleberg, S. Changes in viability, respiratory activity, and morphology of the marine Vibrio. sp. strain S14 during starvation of individual nutrients and subsequent recovery. FEMS Microbiol. Ecol. 1993, 12, 215–224, doi:10.1111/j.1574-6941.1993.tb00034.x.
[33]  Solow, A.R. A simple test for change in community structure. J. Anim. Ecol. 1993, 62, 191–193, doi:10.2307/5493.
[34]  Tilman, D.; Knops, J.; Wedin, D.; Reich, P.; Ritchie, M.; Siemann, E. The influence of functional diversity and composition on ecosystem processes. Science 1997, 277, 1300–1302, doi:10.1126/science.277.5330.1300.
[35]  Shade, A.; Hogan, S.; Klimowicz, A.K.; Linske, M.; McManus, P.S.; Handelsman, J. Culturing captures members of the soil rare biosphere. Environ. Microbiol. 2012, 14, 2247–2252, doi:10.1111/j.1462-2920.2012.02817.x.
[36]  Warwick, R.M.; Clarke, K.M. Relearning the ABC: Taxonomic changes and abundance/biomass relationships in disturbed benthic communities. Mar. Biol. 1994, 118, 739–744, doi:10.1007/BF00347523.
[37]  Jürgens, K.; Arndt, H.; Zimmermann, H. Impact of metazoan and protozoan grazers on bacterial biomass distribution in microcosm experiments. Aquat. Microb. Ecol. 1997, 12, 131–138, doi:10.3354/ame012131.
[38]  Hahn, M.W.; Moore, E.R.; Hofle, M.G. Bacterial filament formation, a defense mechanism againstflagellate grazing, is growth rate controlled in bacteria of different phyla. Appl. Environ. Microbiol. 1999, 65, 25–35.
[39]  West, G.; Brown, J.; Enquist, B. The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science 1999, 284, 1677–1679, doi:10.1126/science.284.5420.1677.
[40]  Hermanowicz, S.; Schindler, U.; Wilderer, P. Fractal structure of biofilms: new tools for investigation of morphology. Water Sci. Technol. 1995, 32, 99–105.
[41]  Yang, X.; Beyenal, H.; Harkin, G.; Lewandowski, Z. Quantifying biofilm structure using image analysis. J. Microbiol. Meth. 2000, 39, 109–119.
[42]  Zhou, J.; Ho, J.; Dazzo, F.B. CMEIAS JFrad: a new computing toolkit to discriminate the fractal geometry of landscape architecture and optimal positioning of individual cells for efficient resource allocation in microbial biofilms. Microb. Ecol. 2013. Submitted for publication.
[43]  Turner, M.G. Landscape ecology: the effect of pattern on process. Annu. Rev. Ecol. Syst. 1989, 20, 171–197.
[44]  Hassell, M.P.; May, R.M. Stability in insect host-parasite models. J. Anim. Ecol. 1973, 42, 693–726, doi:10.2307/3133.
[45]  Perry, J. Measures of spatial patterns for counts. Ecology 1998, 79, 1008–1017, doi:10.1890/0012-9658(1998)079[1008:MOSPFC]2.0.CO;2.
[46]  Yanni, Y.G.; Rizk, R.Y.; Abd El-Fattah, F.K.; Squartini, A.; Corich, V.; Giacomini, A.; de Bruijn, F.; Rademaker, J.; Maya-Flores, J.; Ostrom, P.; et al. The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Austr. J. Plant Physiol. 2001, 28, 845–870.
[47]  Dazzo, F.B. Applications of quantitative microscopy in studies of plant surface microbiology. In Plant Surface Microbiology; Varma, A., Abbott, L., Werner, D., Hampp, R., Eds.; Springer-Verlag: Berlin, Germany, 2004; pp. 503–550.
[48]  Dazzo, F.B.; Schmid, M.; Hartmann, A. Immunofluorescence microscopy and fluorescence in situ hybridization combined with CMEIAS and other image analysis tools for soil- and plant-associated microbial autecology. In Manual of Environmental Microbiology, 3rd; Garland, J., Hurst, C., Lipson, D., Mills, A., Stetzenbach, L., Crawford, R., Eds.; American Society for Microbiology Press: Washington, DC, USA, 2007; pp. 712–733. Chapter 59.
[49]  Dazzo, F.B.; Yanni, Y.G. CMEIAS: An improved computing technology for quantitative image analysis of root colonization by rhizobacteria in situ at single-cell resolution. In Molecular Microbial Ecology of the Rhizosphere; DeBruijn, F., Ed.; John Wiley & Sons: New York, NY, USA, 2013; Volume 2, pp. 733–742. Chapter 69.
[50]  Fukuda, M.; Matsuyama, J.; Katano, T.; Nakano, S.; Dazzo, F.B. Assessing primary and bacterial production rates in biofilms on pebbles in Ishite Stream, Japan. Microbial Ecol. 2006, 52, 1–9, doi:10.1007/s00248-006-9114-0.
[51]  Dazzo, F.B. CMEIAS digital microscopy and quantitative image analysis of microorganisms. In Microscopy: Science, Technology, Applications and Education; Mendez-Vilas, A., Diaz, J., Eds.; Microscopy Book Series #4; Formatex Research Center: Badajoz, Spain, 2010; pp. 1083–1090.
[52]  Dazzo, F.B. CMEIAS-aided microscopy of the spatial ecology of individual bacterial interactions involving cell-to-cell communication within biofilms. Sensors 2012, 12, 7047–7062, doi:10.3390/s120607047.
[53]  Ripley, B.D. Tests of “randomness” for spatial point patterns. J. R. Stat. Soc. 1979, 41, 368–374.
[54]  Hammer, O. New methods for the statistical detection of point patterns. Comput. Geosci. 2009, 35, 659–666, doi:10.1016/j.cageo.2008.03.012.
[55]  Robertson, G.P. Geostatistics in ecology: interpolating with known variance. Ecology 1987, 68, 744–748, doi:10.2307/1938482.
[56]  Ettema, C.H.; Wardle, D.H. Spatial soil ecology. Trends Ecol. Evol. 2002, 17, 117–183.
[57]  Dazzo, F.B.; Joseph, A.R.; Gomaa, A.B.; Yanni, Y.G.; Robertson, G.P. Quantitative indices for the autecological biogeography of a Rhizobium endophyte of rice at macro and micro spatial scales. Symbiosis 2003, 35, 147–158.
[58]  Costerton, J.W. Biofilms. In Topics in Ecological and Environmental Microbiology; Schmidt, T., Schaechter, M., Eds.; Academic Press: Waltham, MA, USA, 2011; pp. 37–42.
[59]  Lee, N.; Nielsen, P.H.; Andreasen, K.; Juretschko, S.; Nielsen, J.; Schleifer, K.; Wagner, M. Combination of fluorescent in situ hybridization and microautoradiography: A new tool for structure–function analyses in microbial ecology. Appl. Environ. Microbiol. 1999, 65, 1289–1297.
[60]  Nielsen, J.; Christensen, D.; Kloppenborg, M.; Nielsen, P. Quantification of cell-specific substrate uptake by probe-defined bacteria under in situ conditions by microautoradiography and fluorescence in situ hybridization. Environ. Microbiol. 2003, 5, 202–211, doi:10.1046/j.1462-2920.2003.00402.x.
[61]  Daims, H.; Wagner, M. Quantification of uncultured microorganisms by fluorescence microscopy and digital image analysis. Appl. Microbiol. Biotech. 2007, 75, 237–248, doi:10.1007/s00253-007-0886-z.
[62]  Hense, B.A.; Kuttler, C.; Müller, J.; Rothballer, M.; Hartmann, A.; Kreft, J.-U. Does efficiency sensing unify diffusion and quorum sensing? Nature Rev. Microbiol. 2007, 5, 230–239, doi:10.1038/nrmicro1600.
[63]  Grimm, V.; Railsback, S.F. Individual-Based Modeling and Ecology; Princeton University Press: Princeton, NJ, USA, 2005.
[64]  Dethlefsen, L.; Relman, D.A. The importance of individuals and scale: moving towards single-cell microbiology. Environ. Microbiol. 2007, 9, 8–10, doi:10.1111/j.1462-2920.2006.01222_8.x.
[65]  Prosser, J.I.; Bohannan, B.J.; Curtis, T.P.; Ellis, R.J.; Firestone, M.K.; Freckleton, R.P.; Green, J.L.; Green, L.E.; Killham, K.; Lennon, J.J.; et al. The role of ecological theory in microbial ecology. Nat. Rev. Microbiol. 2007, 5, 384–392.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133