Oxidative stress is a key mechanism causing protein aggregation, cell death and neurodegeneration in the nervous system. The neuronal cytoskeleton, that is, microtubules, actin filaments and neurofilaments, plays a key role in defending the nervous system against oxidative stress-induced damage and is also a target for this damage itself. Microtubules appear particularly susceptible to damage, with oxidative stress downregulating key microtubule-associated proteins [MAPs] and affecting tubulin through aberrant post-translational modifications. Actin filaments utilise oxidative stress for their reorganisation and thus may be less susceptible to deleterious effects. However, because cytoskeletal components are interconnected through crosslinking proteins, damage to one component affects the entire cytoskeletal network. Neurofilaments are phosphorylated under oxidative stress, leading to the formation of protein aggregates reminiscent of those seen in neurodegenerative diseases. Drugs that target the cytoskeleton may thus be of great use in treating various neurodegenerative diseases caused by oxidative stress.
References
[1]
Grimm, S.; Hoehn, A.; Davies, K.J.; Grune, T. Protein oxidative modifications in the ageing brain, consequence for the onset of neurodegenerative disease. Free Radic. Res. 2010, 45, 73–88.
[2]
Jang, H.J.; Hwang, S.; Cho, K.Y.; Kim do, K.; Chay, K.O.; Kim, J.K. Taxol induces oxidative neuronal cell death by enhancing the activity of NADPH oxidase in mouse cortical cultures. Neurosci. Lett. 2008, 443, 17–22, doi:10.1016/j.neulet.2008.07.049.
[3]
Yeste-Velasco, M.; Alvira, D.; Sureda, F.X.; Rimbau, V.; Forsby, A.; Pallàs, M.; Camins, A.; Folch, J. DNA low-density array analysis of colchicines neurotoxicity in rat cerebellar granular neurons. Neurotoxicology 2008, 29, 309–317, doi:10.1016/j.neuro.2007.11.007.
[4]
Kumar, A.; Naidu, P.S.; Seghal, N.; Padi, S.S. Neuroprotective effects of resveratrol against intracerebroventricular colchicines-induced cognitive impairment and oxidative stress in rats. Pharmacology 2007, 79, 17–26, doi:10.1159/000097511.
[5]
Wersinger, C.; Sidhu, A. Disruption of the interaction of alpha-synuclein with microtubules enhances cell surface recruitment of the dopamine transporter. Biochemistry 2005, 44, 13612–13624, doi:10.1021/bi050402p.
Itoh, K.; Nakamura, K.; Iijima, M.; Sesaki, H. Mitochondrial dynamics in neurodegeneration. Trends Cell Biol. 2013, 23, 64–71, doi:10.1016/j.tcb.2012.10.006.
[17]
Stamer, K.; Vogel, R.; Thies, E.; Mandelkow, E.; Mandelkow, E.M. Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J. Cell Biol. 2002, 16, 1051–1063.
[18]
Feng, J. Microtubule, a common target for parkin and Parkinson’s disease toxins. Neuroscientist 2006, 12, 469–476, doi:10.1177/1073858406293853.
[19]
Dompierre, J.P.; Godin, J.D.; Charrin, B.C.; Cordeliéres, F.P.; King, S.J.; Humbert, S.; Saudou, F. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. J. Neurosci. 2007, 27, 3571–3583, doi:10.1523/JNEUROSCI.0037-07.2007.
[20]
Gardiner, J.; Barton, D.; Marc, J.; Overall, R. Potential role of tubulin acetylation and microtubule-based protein trafficking in familial dysautonomia. Traffic 2007, 8, 1145–1149, doi:10.1111/j.1600-0854.2007.00605.x.
[21]
Nguyen, L.; Humbert, S.; Saudou, F.; Chariot, A. Elongator—An emerging role in neurological disorders. Trends Mol. Med. 2010, 16, 1–6.
[22]
Gardiner, J.; Barton, D.; Overall, R.; Marc, J. Neurotrophic support and oxidative stress, converging effects in the normal and diseased nervous system. Neuroscientist 2009, 15, 47–61, doi:10.1177/1073858408325269.
Jomova, K.; Vondrakova, D.; Lawson, M.; Valko, M. Metals, oxidative stress and neurodegenerative disorders. Mol. Cell. Biochem. 2010, 345, 91–104, doi:10.1007/s11010-010-0563-x.
[25]
Konishi, Y.; Setou, M. Tubulin tyrosination navigates the kinesin-1 motor domain to axons. Nat. Neurosci. 2009, 12, 559–567, doi:10.1038/nn.2314.
[26]
Gadau, S.; Lepore, G.; Zedda, M.; Mura, A.; Farina, V. Different nitroative-induced microtubular modifications and testosterone neuroprotective effects on high-d-glucose-exposed neuroblastoma and glioma cells. Neuro. Endocrinol. Lett. 2009, 30, 515–524.
[27]
Eiserich, J.P.; Estévez, A.G.; Bamberg, T.V.; Ye, Y.Z.; Chumley, P.H.; Beckman, J.S.; Freeman, B.A. Microtubule dysfunction by posttranslational nitrotyrosination of alpha-tubulin, a nitric oxide-dependent mechanism of cellular injury. Proc. Natl. Acad. Sci. USA 1999, 96, 6365–6370.
[28]
Bisig, C.G.; Purro, S.A.; Contín, M.A.; Barra, H.S.; Arce, C.A. Incorporation of 3-nitrotyrosine into the C-terminus of alpha-tubulin is reversible and not detrimental to dividing cells. Eur. J. Biochem. 2002, 269, 5037–5045.
[29]
Sparaco, M.; Gaeta, L.M.; Tozzi, G.; Bertini, E.; Pastore, A.; Simonati, A.; Santorelli, F.M.; Piemonte, F. Protein glutathionylation in human central nervous system, potential role in redox regulation of neuronal defense against free radicals. J. Neurosci. Res. 2006, 83, 256–263, doi:10.1002/jnr.20729.
[30]
Carletti, B.; Passarelli, C.; Sparaco, M.; Tozzi, G.; Pastore, A.; Bertini, E.; Piemonte, F. Effect of protein glutathionylation on neuronal cytoskeleton: A potential link to neurodegeneration. Neuroscience 2011, 192, 285–294, doi:10.1016/j.neuroscience.2011.05.060.
[31]
Benitez-King, G.; Túnez, I.; Bellon, A.; Ortíz, G.G.; Antón-Tay, F. Melatonin prevents cytoskeletal alterations and oxidative stress caused by okadaic acid in N1E-115 cells. Exp. Neurol. 2003, 182, 151–159, doi:10.1016/S0014-4886(03)00085-2.
[32]
Yamanaka, Y.; Yoshida, S.; Doi, H. NGF-induced neurite outgrowth of PC12 cells in the presence of phosphatidylcholine hydroperoxides, implication for ageing. Mech. Aging Dev. 2008, 129, 215–222, doi:10.1016/j.mad.2007.12.008.
[33]
Liu-Snyder, P.; McNally, H.; Shi, R.; Borgens, R.B. Acrolein-mediated mechanisms of neuronal death. J. Neurosci. Res. 2006, 84, 209–218, doi:10.1002/jnr.20863.
[34]
Gómez-Ramos, A.; Díaz-Nido, J.; Smith, M.A.; Perry, G.; Avila, J. Effect of the lipid peroxidation product acrolein on tau phosphorylation in neural cells. J. Neurosci. Res. 2003, 71, 863–870, doi:10.1002/jnr.10525.
[35]
Counterman, A.E.; D’Onofrio, T.G.; Andrew, A.M.; Weiss, P.S. A physical model of axonal damage due to oxidative stress. Proc. Natl. Acad. Sci. USA 2006, 103, 5262–5266, doi:10.1073/pnas.0504134103.
[36]
Yamashita, H.; Nakamura, K.; Arai, H.; Furumoto, H.; Fujimoto, M.; Kashiwagi, S.; Morimatsu, M. Electrophoretic studies on the phosphorylation of stathmin and mitogen-activated protein kinases in neuronal cell death induced by oxidized very-low-density lipoprotein with apolipoprotein E. Electrophoresis 2002, 23, 998–1004, doi:10.1002/1522-2683(200204)23:7/8<998::AID-ELPS998>3.0.CO;2-B.
[37]
Neely, M.D.; Sidell, K.R.; Graham, D.G.; Montine, T.J. The lipid peroxidation product 4-hydroxynonenal inhibits neurite outgrowth, disrupts neuronal microtubules, and modifies cellular tubulin. J. Neurochem. 1999, 72, 2323–2333.
[38]
Mattson, M.P.; Fu, W.; Waeg, G.; Uchida, K. 4-hydroxynonenal, a product of lipid peroxidation, inhibits dephosphorylation of the microtubule-associated protein tau. Neuroreport 1997, 8, 2275–2281, doi:10.1097/00001756-199707070-00036.
[39]
Kaindl, A.M.; Sifringer, M.; Zabel, C.; Nebrich, G.; Wacker, M.A.; Felderhoff-Mueser, U.; Endesfelder, S.; von der Hagen, M.; Stefovska, V.; Klose, J.; et al. Acute and long-term proteome changes induced by oxidative stress in the developing brain. Cell Death Differ. 2006, 13, 1097–1109, doi:10.1038/sj.cdd.4401796.
[40]
Rivas-Arancibia, S.; Guevara-Guzmán, R.; López-Vidal, Y.; Rodríguez-Martínez, E.; Zanardo-Gomes, M.; Angoa-Pérez, M.; Raisman-Vozari, R. Oxidative stress caused by ozone exposure induces loss of brain repair in the hippocampus of adult rats. Toxicol. Sci. 2010, 113, 187–197, doi:10.1093/toxsci/kfp252.
[41]
Hensley, K.; Christov, A.; Kamat, S.; Zhang, X.C.; Jackson, K.W.; Snow, S.; Post, J. Proteomic identification of binding partners for the brain metabolite lanthionine ketimine (LK) and documentation of LK effects on microglia and motoneuron cell cultures. J. Neurosci. 2010, 30, 2979–2988, doi:10.1523/JNEUROSCI.5247-09.2010.
Fifre, A.; Sponne, I.; Koziel, V.; Kriem, B.; Yen Potin, F.T.; Bihain, B.E.; Olivier, J.L.; Oster, T.; Pillot, T. Microtubule-associated protein MAP1A, MAP1B, and MAP2 proteolysis during soluble amyloid beta-peptide-induced neuronal apoptosis. Synergistic involvement of calpain and caspase-3. J. Biol. Chem. 2006, 281, 229–240, doi:10.1074/jbc.M507378200.
[44]
Santa-María, I.; Smith, M.A.; Perry, G.; Hernández, F.; Avila, J.; Moreno, F.J. Effect of quinines on microtubule polymerization, a link between oxidative stress and cytoskeletal alterations in Alzheimer’s disease. Biochim Biophys. Acta 2005, 1740, 472–480, doi:10.1016/j.bbadis.2004.11.024.
[45]
Kabuta, T.; Setsuie, R.; Mitsui, T.; Kinugawa, A.; Sakurai, M.; Aoki, S.; Uchida, K.; Wada, K. Aberrant molecular properties shared by familial Parkinson’s disease-associated mutant UCH-L1 and carbonyl-modified UCH-L1. Hum. Mol. Genet. 2008, 17, 1482–1496, doi:10.1093/hmg/ddn037.
[46]
Boutte, A.M.; Woltjer, R.L.; Zimmerman, L.J.; Stamer, S.L.; Montine, K.S.; Manno, M.V.; Cimino, P.J.; Liebler, D.C.; Montine, T.J. Selectively increased oxidative modifications mapped to detergent-insoluble forms of Abeta and beta-III tubulin in Alzheimer’s disease. FASEB J. 2006, 20, 1473–1483, doi:10.1096/fj.06-5920com.
[47]
Reynolds, M.R.; Lukas, T.J.; Berry, R.W.; Biner, L.I. Peroxynitrite-mediated tau modification stabilize preformed filaments and destabilize microtubules through distinct mechanisms. Biochemistry 2006, 45, 4314–4326, doi:10.1021/bi052142h.
[48]
Tremblay, M.A.; Acker, C.M.; Davies, P. Tau phosphorylated at tyrosine 394 is found in Alzheimer’s disease tangles and can be a product of the Abl-related kinase. J. Alzheimers Dis. 2010, 19, 721–733.
Whiteman, I.T.; Gervasio, O.L.; Cullen, K.M.; Guillemin, G.J.; Jeong, E.V.; Witting, P.K.; Antao, S.T.; Minamide, L.S.; Bamburg, J.R.; Goldsbury, C. Activated actin-depolymerizing factor/cofilin sequesters phosphorylated microtubule-associated protein during the assembly of alzheimer’like neuritic cytoskeletal striations. J. Neurosci. 2009, 29, 12994–13005, doi:10.1523/JNEUROSCI.3531-09.2009.
[51]
Santa-María, I.; Hernández, F.; Smith, M.A.; Perry, G.; Avila, J.; Moreno, F.J. Neurotoxic dopamine quinone facilitates the assembly of tau into fibrillar polymers. Mol. Cell. Biochem. 2005, 278, 203–212, doi:10.1007/s11010-005-7499-6.
[52]
Balastik, M.; Lim, J.; Pastorino, L.; Lu, K.P. Pin1 in Alzheimer’s disease, multiple substrates, one regulatory mechanism? Biochi. Biophys. Acta 2007, 1722, 422–429, doi:10.1016/j.bbadis.2007.01.006.
[53]
Zemlyak, I.; Sapolsky, R.; Gozes, I. NAP protects against Cytochrome C release, inhibition of the initiation of apoptosis. Eur. J. Pharmacol. 2009, 618, 9–14, doi:10.1016/j.ejphar.2009.07.013.
[54]
Divinski, I.; Holtser-Cochav, M.; Vulih-Schultzman, I.; Steingart, R.A.; Gozes, I. Peptide neuroprotection through specific interaction with brain tubulin. J. Neurochem. 2006, 98, 973–984, doi:10.1111/j.1471-4159.2006.03936.x.
[55]
Klein, R.L.; Dayton, R.D.; Henderson, K.M.; Petrucelli, L. Parkin is protective for substantia nigra dopamine neurons in a tau gene transfer neurodegeneration model. Neurosci. Lett. 2006, 401, 130–135, doi:10.1016/j.neulet.2006.03.001.
[56]
Yang, Z.; Zhang, Q.; Ge, J.; Tan, Z. Protective effects of tetramethylpyrazine on rat retinal cell cultures. Neurochem. Int. 2008, 52, 1176–1187, doi:10.1016/j.neuint.2007.12.008.
[57]
Ingber, D.E. From cellular mechanotransduction to biologically inspired engineering. Ann. Biomed. Eng. 2010, 38, 1148–1161, doi:10.1007/s10439-010-9946-0.
[58]
Ingber, D.E. Tensegrity-based mechanosensing from macro to micro. Prog. Biophys. Mol. Biol. 2008, 97, 163–179, doi:10.1016/j.pbiomolbio.2008.02.005.
[59]
Wang, N.; Naruse, K.; Stamenovi?, D.; Fredberg, J.J.; Mijailovich, S.M.; Toli?-N?rrelykke, I.M.; Polte, T.; Mannix, R.; Ingber, D.E. Mechanical behaviour in living cells consistent with the tensegrity model. Proc. Natl. Acad. Sci. USA 2001, 98, 7765–7770, doi:10.1073/pnas.141199598.
[60]
Lee, S.; Kolodziej, P.A. Short Stop provides an essential link between F-actin and microtubules during axon extension. Development 2002, 129, 1195–1204.
[61]
Subramanian, A.; Prokop, A.; Yamamoto, M.; Sugimura, K.; Uemura, T.; Betschinger, J.; Knoblich, J.A.; Volk, T. Shortstop recruits EB1/APC1 and promotes microtubule assembly at the muscle-tendon junction. Curr. Biol. 2003, 13, 1086–1095, doi:10.1016/S0960-9822(03)00416-0.
[62]
Houseweart, M.K.; Cleveland, D.W. Cytoskeletal linkers, new MAPs for old destinations. Curr. Biol. 1999, 9, R864–R866, doi:10.1016/S0960-9822(00)80048-2.
[63]
Dalpé, G.; Leclerc, N.; Vallée, A.; Messer, A.; Mathieu, M.; de Repentigny, Y.; Kothary, R. Dystonin is essential for maintaining neuronal cytoskeleton organization. Mol. Cell. Neurosci. 1998, 10, 243–257, doi:10.1006/mcne.1997.0660.
Kim, K.H.; Son, J.H. PINK1 gene knockdown leads to increased binding of parkin with actin filament. Neurosci. Lett. 2010, 468, 272–276, doi:10.1016/j.neulet.2009.11.011.
[66]
Morot-Gaudry-Talarmain, Y. Physical and functional interactions of cyclophilin B with neuronal actin and peroxiredoxin-1 are modified by oxidative stress. Free Radic. Biol. Med. 2009, 47, 1715–1730, doi:10.1016/j.freeradbiomed.2009.09.014.
[67]
Huang, T.Y.; Minamide, L.S.; Bamburg, J.R.; Bokoch, G.M. Chronophin mediates an ATP-sensing mechanism for cofilin dephosphorylation and neuronal cofilin-actin rod formation. Dev. Cell 2008, 15, 691–703, doi:10.1016/j.devcel.2008.09.017.
[68]
Barth, B.M.; Stewart-Smeets, S.; Kuhn, T.B. Proinflammatory cytokines provoke oxidative damage to actin in neuronal cells mediated by Rac1 and NADPH oxidase. Mol. Cell. Neurosci. 2009, 41, 274–285, doi:10.1016/j.mcn.2009.03.007.
[69]
Oikawa, S.; Yamada, T.; Minohata, T.; Kobayashi, H.; Furukawa, A.; Tada-Oikawa, S.; Hiraku, Y.; Murata, M.; Kikuchi, M.; Yamashima, T. Proteomic identification of carbonylated proteins in the monkey hippocampus after ischemia-reperfusion. Free Radic. Biol. Med. 2009, 46, 1472–1477, doi:10.1016/j.freeradbiomed.2009.02.029.
[70]
Loureiro, S.O.; Rom?o, L.; Alves, T.; Fonseca, A.; Heimfarth, L.; Neto, V.M.; Wyse, A.T.; Pessoa-Pureur, R. Homocysteine induces cytoskeletal remodelling and production of reactive oxygen species in cultured cortical astrocytes. Brain Res. 2010, 1355, 151–164, doi:10.1016/j.brainres.2010.07.071.
[71]
Abrahan, C.E.; Insua, M.F.; Politi, L.E.; German, O.L.; Rotstein, N.P. Oxidative stress promotes proliferation and dedifferentiation of retina glial cells in vitro. J. Neurosci. Res. 2009, 87, 964–977, doi:10.1002/jnr.21903.
[72]
Sasaki, T.; Gotow, T.; Shiozaki, M.; Sakaue, F.; Saito, T.; Julien, J.P.; Uchiyama, Y.; Hisanaga, S. Aggregate formation and phosphorylation of neurofilament-L Pro22 Charcot-Marie-Tooth disease mutants. Hum. Mol. Genet. 2006, 15, 943–952, doi:10.1093/hmg/ddl011.
[73]
Rudrabhatla, P.; Zheng, Y.L.; Amin, N.D.; Kesavapany, S.; Albers, W.; Pant, H.C. Pin1-dependent prolyl isomerisation modulates the stress-induced phosphorylation of high molecular weight neurofilament protein. J. Biol. Chem. 2008, 283, 26737–26747, doi:10.1074/jbc.M801633200.
[74]
Pierozan, P.; Zamoner, A.; Soska, A.K.; Silvestrin, R.B.; Loureiro, S.O.; Heimfarth, L.; Mello e Souza, T.; Wajner, M.; Pessoa-Pureur, R. Acute intrastriatal administration of quinolinic acid provokes hyperphosphorylation of cytoskeletal intermediate filament proteins in astrocytes and neurons of rats. Exp. Neurol. 2010, 224, 188–196, doi:10.1016/j.expneurol.2010.03.009.
[75]
Sparaco, M.; Gaeta, L.M.; Santorelli, F.M.; Passarelli, C.; Tozzi, G.; Bertini, E.; Simonati, A.; Scaravilli, F.; Taroni, F.; Duyckaerts, C.; Feleppa, M.; Piemonte, F. Friereich’s ataxia, oxidative stress and cytoskeletal abnormalities. J. Neurol. Sci. 2009, 287, 111–118, doi:10.1016/j.jns.2009.08.052.
[76]
Shea, T.B.; Zheng, Y.L.; Ortiz, D.; Pant, H.C. Cyclin-dependent kinase 5 increases perikaryal neurofilament phosphorylation and inhibits neurofilament axonal transport in response to oxidative stress. J. Neurosci. Res. 2004, 76, 795–800, doi:10.1002/jnr.20099.
Pamplona, R.; Dalfó, E.; Ayala, V.; Bellmunt, M.J.; Prat, J.; Ferrer, I.; Portero-Otín, M. Proteins in human brain cortex are modified by oxidation, glycoxidation, and lipoxidation. Effects of Alzheimer disease and identification of lipoxidation targets. J. Biol. Chem. 2005, 280, 21522–21530.
[79]
Ali, Z.S.; van Der Voorn, J.P.; Powers, J.M. A comparative morphologic analysis of adult onset leukodystrophy with neuronal spheroids and pigmented glia—A role for oxidative damage. J. Neuropathol. Exp. Neurol. 2007, 66, 660–672, doi:10.1097/nen.0b013e3180986247.
[80]
Wataya, T.; Nunomura, A.; Smith, M.A.; Siedlak, S.L.; Harris, P.L.; Shimohama, S.; Szweda, L.I.; Kaminski, M.A.; Avila, J.; Price, D.L.; et al. High molecular weight neurofilament proteins are physiological substrates of adduction by the lipid peroxidation product hydroxynonenal. J. Biol. Chem. 2002, 277, 4644–4648, doi:10.1074/jbc.M110913200.
[81]
Sugimoto, K.; Yasujima, M.; Yagihashi, S. Role of advanced glycation end products in diabetic neuropathy. Curr. Pharm. Des. 2008, 14, 953–961, doi:10.2174/138161208784139774.
[82]
Chiasson, K.; Lahaie-Collins, V.; Bournival, J.; Delapierre, B.; Gélinas, S.; Martinoli, M.G. Oxidative stress and 17-alpha- and 17-beta-estradiol modulate neurofilaments differently. J. Mol. Neurosci. 2006, 30, 297–310, doi:10.1385/JMN:30:3:297.
[83]
Opii, W.O.; Joshi, G.; Head, E.; Milgram, N.W.; Muggenburg, B.A.; Klein, J.B.; Pierce, W.M.; Cotman, CW.; Butterfield, D.A. Proteomic identification of brain proteins in the canine model of human aging following a long-term treatment with antioxidants and a program of behavioural enrichment, relevance to Alzheimer’s disease. Neurobiol. Aging 2008, 29, 51–70, doi:10.1016/j.neurobiolaging.2006.09.012.
[84]
Mackenzie, G.G.; Salvador, G.A.; Romero, C.; Keen, C.L.; Oteiza, P.I. A deficit in zinc availability can cause alterations in tubulin thiol redox status in cultured neurons and in the developing fetal rat brain. Free Radic. Biol. Med. 2011, 51, 480–489, doi:10.1016/j.freeradbiomed.2011.04.028.