全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Diagnostics  2013 

A Multi-Camera System for Bioluminescence Tomography in Preclinical Oncology Research

DOI: 10.3390/diagnostics3030325

Keywords: imaging systems, medical and biological imaging, tomography, bioluminescence, MRI, lung cancer

Full-Text   Cite this paper   Add to My Lib

Abstract:

Bioluminescent imaging (BLI) of cells expressing luciferase is a valuable noninvasive technique for investigating molecular events and tumor dynamics in the living animal. Current usage is often limited to planar imaging, but tomographic imaging can enhance the usefulness of this technique in quantitative biomedical studies by allowing accurate determination of tumor size and attribution of the emitted light to a specific organ or tissue. Bioluminescence tomography based on a single camera with source rotation or mirrors to provide additional views has previously been reported. We report here in vivo studies using a novel approach with multiple rotating cameras that, when combined with image reconstruction software, provides the desired representation of point source metastases and other small lesions. Comparison with MRI validated the ability to detect lung tumor colonization in mouse lung.

References

[1]  Thorne, S.H.; Contag, C.H. Using in vivo bioluminescence imaging to shed light on cancer biology. Proc. IEEE 2005, 93, 750–762, doi:10.1109/JPROC.2005.844261.
[2]  Villalobos, V.; Naik, S.; Piwnica-Worms, D. Current state of imaging protein-protein interactions in vivo with genetically encoded reporters. Annu. Rev. Biomed. Eng. 2007, 9, 321–349, doi:10.1146/annurev.bioeng.9.060906.152044.
[3]  Weissleder, R.; Pittet, M.J. Imaging in the era of molecular oncology. Nature 2008, 452, 580–589, doi:10.1038/nature06917.
[4]  O’Neill, K.; Lyons, S.K.; Gallagher, W.M.; Curran, K.M.; Byrne, A.T. Bioluminescent imaging: A critical tool in pre-clinical oncology research. J. Pathol. 2009, 220, 317–327.
[5]  Prescher, J.A.; Contag, C.H. Guided by the light: Visualizing biomolecular processes in living animals with bioluminescence. Curr. Opin. Chem. Biol. 2010, 14, 80–89, doi:10.1016/j.cbpa.2009.11.001.
[6]  Hall, M.P.; Unch, J.; Binkowski, B.F.; Valley, M.P.; Butler, B.L.; Wood, M.G.; Otto, P.; Zimmerman, K.; Vidugiris, G.; Machleidt, T.; et al. Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem. Biol. 2012, 7, 1848–1857, doi:10.1021/cb3002478.
[7]  Liu, L.; Mason, R.P. Imaging β-galactosidase activity in human tumor xenografts and transgenic mice using a chemiluminescent substrate. PLoS ONE 2010, 5, doi:10.1371/journal.pone.0012024.
[8]  Bhaumik, S.; Lewis, X.Z.; Gambhir, S.S. Optical imaging of Renilla luciferase, synthetic Renilla luciferase, and firefly luciferase reporter gene expression in living mice. J. Biomed. Opt. 2004, 9, 578–586, doi:10.1117/1.1647546.
[9]  Rice, B.W.; Cable, M.D.; Nelson, M.B. In vivo imaging of light-emitting probes. J. Biomed. Opt. 2001, 6, 432–440, doi:10.1117/1.1413210.
[10]  Tromberg, B.J.; Shah, N.; Lanning, R.; Cerussi, A.; Espinoza, J.; Pham, T.; Svaasand, L.; Butler, J. Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy. Neoplasia 2000, 2, 26–40, doi:10.1038/sj.neo.7900082.
[11]  Wang, G.; Cong, W.; Shen, H.; Qian, X.; Henry, M.; Wang, Y. Overview of bioluminescence tomography—A new molecular imaging modality. Front. Biosci. 2008, 13, 1281–1293, doi:10.2741/2761.
[12]  Roncali, E.; Savinaud, M.; Levrey, O.; Rogers, K.L.; Maitrejean, S.; Tavitian, B. New device for real-time bioluminescence imaging in moving rodents. J. Biomed. Opt. 2008, 13, 054035, doi:10.1117/1.2976426.
[13]  Yan, H.; Lin, Y.; Barber, W.C.; Unlu, M.B.; Gulsen, G. A gantry-based tri-modality system for bioluminescence tomography. Rev. Sci. Instrum 2012, 83, 043708:1–043708:8.
[14]  Feng, J.; Qin, C.; Jia, K.; Zhu, S.; Yang, X.; Tian, J. Bioluminescence tomography imaging in vivo: Recent advances. IEEE J. Sel. Top. Quant. Electron. 2012, 18, 1394–1402, doi:10.1109/JSTQE.2011.2178234.
[15]  Cong, W.; Wang, G.; Kumar, D.; Liu, Y.; Jiang, M.; Wang, L.; Hoffman, E.; McLennan, G.; McCray, P.; Zabner, J.; Cong, A. Practical reconstruction method for bioluminescence tomography. Opt. Express 2005, 13, 6756–6771, doi:10.1364/OPEX.13.006756.
[16]  Ntziachristos, V.; Weissleder, R. Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized born approximation. Optics Letters 2001, 26, 893–895, doi:10.1364/OL.26.000893.
[17]  Graves, E.E.; Ripoll, J.; Weissleder, R.; Ntziachristos, V. A submillimeter resolution fluorescence molecular imaging system for small animal imaging. Med. Phys. 2003, 30, 901–911, doi:10.1118/1.1568977.
[18]  Kok, P.; Botha, C.P.; Dijkstra, J.; Kaijzel, E.; Que, I.; L?wik, C.W.G.M.; Reiber, J.H.C.; Lelieveldt, B.P.F.; Post, F.H. Integrated visualization of multi-angle bioluminescence imaging and micro CT. Proc. SPIE 2007, 6509, doi:10.1117/12.711117.
[19]  Kuo, C.; Coquoz, O.; Troy, T.L.; Xu, H.; Rice, B.W. Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging. J. Biomed. Opt. 2007, 12, 02447, doi:10.1117/1.2717898.
[20]  Li, C.; Mitchell, G.S.; Dutta, J.; Ahn, S.; Leahy, R.M.; Cherry, S.R. A three-dimensional multispectral fluorescence optical tomography imaging system for small animals based on a conical mirror design. Opt. Express 2009, 17, 7571–7585, doi:10.1364/OE.17.007571.
[21]  Li, C.; Yang, Y.; Mitchell, G.S.; Cherry, S.R. Simultaneous PET and multispectral 3-dimensional fluorescence optical tomography imaging system. J. Nucl. Med. 2011, 52, 1268–1275, doi:10.2967/jnumed.110.082859.
[22]  Gu, X.; Zhang, Q.; Larcom, L.; Jiang, H. Three-dimensional bioluminescence tomography with model-based reconstruction. Opt. Express 2004, 12, 3996–4000, doi:10.1364/OPEX.12.003996.
[23]  Chaudhari, A.J.; Darvas, F.; Bading, J.R.; Moats, R.A.; Conti, P.S.; Smith, D.J.; Cherry, S.R.; Leahy, R.M. Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging. Phys. Med. Biol. 2005, 50, 5421–5441, doi:10.1088/0031-9155/50/23/001.
[24]  Dehghani, H.; Davis, S.C.; Jiang, S.; Pogue, B.W.; Paulsen, K.D.; Patterson, M.S. Spectrally resolved bioluminescence optical tomography. Optics Letters 2006, 31, 365–367, doi:10.1364/OL.31.000365.
[25]  Wang, G.; Shen, H.; Liu, Y.; Cong, A.; Cong, W.; Wang, Y.; Dubey, P. Digital spectral separation methods and systems for bioluminescence imaging. Opt. Express 2008, 16, 1719–1732.
[26]  Dehghani, H.; Davis, S.C.; Pogue, B.W. Spectrally resolved bioluminescence tomography using the reciprocity approach. Med. Phys. 2008, 35, 4863–4871, doi:10.1118/1.2982138.
[27]  Ahn, S.; Chaudhari, A.J.; Darvas, F.; Bouman, C.A.; Leahy, R.M. Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography. Phys. Med. Biol. 2008, 53, 3921–3942, doi:10.1088/0031-9155/53/14/013.
[28]  Lu, Y.; Zhang, X.; Douraghy, A.; Stout, D.; Tian, J.; Chan, T.F.; Chatziioannou, A.F. Source reconstruction for spectrally-resolved bioluminescence tomography with sparse a priori information. Opt. Express 2009, 17, 8062–8080, doi:10.1364/OE.17.008062.
[29]  Feng, J.; Qin, C.; Jia, K.; Han, D.; Liu, K.; Zhu, S.; Yang, X.; Tian, J. An adaptive regularization parameter choice strategy for multispectral bioluminescence tomography. Med. Phys. 2011, 38, 5933–5944, doi:10.1118/1.3635221.
[30]  Qin, C.; Yang, X.; Feng, J.; Liu, K.; Liu, J.; Yan, G.; Zhu, S.; Xu, M.; Tian, J. Adaptive improved element free Galerkin method for quasi- or multi-spectral bioluminescence tomography. Opt. Express 2009, 17, 21925–21934, doi:10.1364/OE.17.021925.
[31]  Virostko, J.M.; Powers, A.C.; Jansen, E.D. Validation of luminescent source reconstruction using spectrally resolved bioluminescence images. Proc. SPIE 2008, 6849, doi:10.1117/12.771416.
[32]  Soloviev, V.Y. Tomographic bioluminescence imaging with varying boundary conditions. Appl. Optics 2007, 46, 2778–2784, doi:10.1364/AO.46.002778.
[33]  Wang, G.; Shen, H.; Cong, W.; Zhao, S.; Wei, G.W. Temperature-modulated bioluminescence tomography. Opt. Express 2006, 14, 7852–7871, doi:10.1364/OE.14.007852.
[34]  Jansen, E.D.; Pickett, P.M.; Mackanos, M.A.; Virostko, J. Effect of optical tissue clearing on spatial resolution and sensitivity of bioluminescence imaging. J. Biomed. Opt. 2006, 11, 041119, doi:10.1117/1.2337651.
[35]  Alexandrakis, G.; Rannou, F.R.; Chatziioannou, A.F. Effect of optical property estimation accuracy on tomographic bioluminescence imaging: Simulation of a combined optical-PET (OPET) system. Phys. Med. Biol. 2006, 51, 2045–2053, doi:10.1088/0031-9155/51/8/006.
[36]  Alexandrakis, G.; Rannou, F.R.; Chatziioannou, A.F. Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: A computer simulation feasibility study. Phys. Med. Biol. 2005, 50, 4225–4241, doi:10.1088/0031-9155/50/17/021.
[37]  Yan, H.; Unlu, M.B.; Nalcioglu, O.; Gulsen, G. Bioluminescence tomography with structural and functional a priori information. Proc. SPIE 2010, 7557, doi:10.1117/12.842808.
[38]  Naser, M.A.; Patterson, M.S.; Wong, J.W. Self-calibrated algorithms for diffuse optical tomography and bioluminescence tomography using relative transmission images. Biomed. Optics Express 2012, 3, 2794–2808, doi:10.1364/BOE.3.002794.
[39]  Feng, J.; Qin, C.; Jia, K.; Zhu, S.; Liu, K.; Han, D.; Yang, X.; Gao, Q.; Tian, J. Total variation regularization for bioluminescence tomography with the split Bregman method. Appl. Optics 2012, 51, 4501–4512, doi:10.1364/AO.51.004501.
[40]  Guo, W.; Jia, K.; Zhang, Q.; Liu, X.; Feng, J.; Qin, C.; Ma, X.; Yang, X.; Tian, J. Sparse reconstruction for bioluminescence tomography based on the semigreedy method. Comput. Math. Methods Med. 2012, 2012, doi:10.1155/2012/494808.
[41]  Guo, W.; Jia, K.; Tian, J.; Han, D.; Liu, X.; Wu, P.; Feng, J.; Yang, X. An efficient reconstruction method for bioluminescence tomography based on two-step iterative shrinkage approach. Proc. SPIE 2012, 8313, doi:10.1117/12.911158.
[42]  Guo, W.; Jia, K.; Tian, J.; Han, D.; Liu, X.; Liu, K.; Zhang, Q.; Feng, J.; Qin, C. Sparsity reconstruction for bioluminescence tomography based on an augmented lagrangian method. Proc. SPIE 2012, 8225, doi:10.1117/12.907657.
[43]  Qin, C.; Zhu, S.; Feng, J.; Zhong, J.; Ma, X.; Wu, P.; Tian, J. Comparison of permissible source region and multispectral data using efficient bioluminescence tomography method. J. Biophoton. 2011, 4, 824–839, doi:10.1002/jbio.201100049.
[44]  Zhang, B.; Yang, X.; Qin, C.; Liu, D.; Zhu, S.; Feng, J.; Sun, L.; Liu, K.; Han, D.; Ma, X.; et al. A trust region method in adaptive finite element framework for bioluminescence tomography. Opt. Express 2010, 18, 6477–6491.
[45]  Slavine, N.V.; Lewis, M.A.; Richer, E.; Antich, P.P. Iterative reconstruction method for light emitting sources based on the diffusion equation. Med. Phys. 2006, 33, 61–68, doi:10.1118/1.2138007.
[46]  Paroo, Z.; Bollinger, R.A.; Braasch, D.A.; Richer, E.; Corey, D.R.; Antich, P.P.; Mason, R.P. Validating bioluminescence imaging as a high-throughput, quantitative modality for assessing tumor burden. Mol. Imag. 2004, 3, 117–124, doi:10.1162/1535350041464865.
[47]  Unlu, M.B.; Gulsen, G. Effects of the time dependence of a bioluminescent source on the tomographic reconstruction. Appl. Optics 2008, 47, 799–806, doi:10.1364/AO.47.000799.
[48]  Hillman, E.M.C.; Moore, A. All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast. Nat. Photon. 2007, 1, 526–530, doi:10.1038/nphoton.2007.146.
[49]  Feng, J.; Jia, K.; Yan, G.; Zhu, S.; Qin, C.; Lv, Y.; Tian, J. An optimal permissible source region strategy for multispectral bioluminescence tomography. Opt. Express 2008, 16, 15640–15654, doi:10.1364/OE.16.015640.
[50]  Virostko, J.; Powers, A.C.; Jansen, E.D. Validation of luminescent source reconstruction using single-view spectrally resolved bioluminescence images. Appl. Optics 2007, 46, 2540–2547, doi:10.1364/AO.46.002540.
[51]  Han, W.M.; Wang, G. Theoretical and numerical analysis on multispectral bioluminescence tomography. IMA J. Appl. Math. 2007, 72, 67–85, doi:10.1093/imamat/hxl031.
[52]  Han, W.M.; Cong, W.X.; Wang, G. Mathematical theory and numerical analysis of bioluminescence tomography. Inverse Probl. 2006, 22, 1659–1675, doi:10.1088/0266-5611/22/5/008.
[53]  Wang, G.; Li, Y.; Jiang, M. Uniqueness theorems in bioluminescence tomography. Med. Phys. 2004, 31, 2289–2299, doi:10.1118/1.1766420.
[54]  Cheng, X.L.; Gong, R.F.; Han, W.M. A new general mathematical framework for bioluminescence tomography. Comput. Meth. Appl. Mech. Eng. 2008, 197, 524–535, doi:10.1016/j.cma.2007.08.026.
[55]  Han, W.M.; Wang, G. Bioluminescence tomography: Biomedical background, mathematical theory, and numerical approximation. J. Comput. Math. 2008, 26, 324–335, doi:10.1016/j.cam.2007.11.001.
[56]  Lv, Y.; Tian, J.; Cong, W.; Wang, G.; Yang, W.; Qin, C.; Xu, M. Spectrally resolved bioluminescence tomography with adaptive finite element analysis: Methodology and simulation. Phys. Med. Biol. 2007, 52, 4497–4512, doi:10.1088/0031-9155/52/15/009.
[57]  Lv, Y.; Tian, J.; Cong, W.; Wang, G.; Luo, J.; Yang, W.; Li, H. A multilevel adaptive finite element algorithm for bioluminescence tomography. Opt. Express 2006, 14, 8211–8223, doi:10.1364/OE.14.008211.
[58]  Gong, W.; Li, R.; Yan, N.; Zhao, W. An improved error analysis for finite element approximation of bioluminescence tomography. J. Comput. Math. 2008, 26, 297–309.
[59]  Kumar, D.; Cong, W.X.; Wang, G. Monte Carlo method for bioluminescence tomography. Indian J. Exp. Biol. 2007, 45, 58–63.
[60]  Li, H.; Tian, J.; Zhu, F.; Cong, W.; Wang, L.V.; Hoffman, E.A.; Wang, G. A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method. Acad. Radiol. 2004, 11, 1029–1038, doi:10.1016/j.acra.2004.05.021.
[61]  Dikmen, Z.G.; Gellert, G.; Dogan, P.; Mason, R.; Antich, P.; Richer, E.; Wright, W.E.; Shay, J.E. A new diagnostic system in cancer research: Bioluminescent imaging (BLI). Turk. J. Med. Sci. 2005, 35, 65–70.
[62]  Troy, T.; Jekic-McMullen, D.; Sambucetti, L.; Rice, B. Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol. Imag. 2004, 3, 9–23, doi:10.1162/153535004773861688.
[63]  Contero, A.; Richer, E.; Gondim, A.; Mason, R.P. High-throughput quantitative bioluminescence imaging for assessing tumor burden. Methods Mol. Biol. 2009, 574, 37–45, doi:10.1007/978-1-60327-321-3_4.
[64]  Slavine, N.V.; McColl, R.W.; Richer, E.; Mason, R.P.; Antich, P.P. An Automated 3D Image-Processing Strategy for Small-Animal Bioluminescence Cancer Studies. In Proceedings of Biotechnology and Bioinformatics Symposium (BIOT-2008), Arlington, TX, USA, October 2008.
[65]  Alhasan, M.K.; Liu, L.; Lewis, M.A.; Magnusson, J.; Mason, R.P. Comparison of optical and power Doppler ultrasound imaging for non-invasive evaluation of arsenic trioxide as a vascular disrupting agent in tumors. PLoS ONE 2012, 7, doi:10.1371/journal.pone.0046106.
[66]  Sarraf-Yazdi, S.; Mi, J.; Dewhirst, M.W.; Clary, B.M. Use of in vivo bioluminescence imaging to predict hepatic tumor burden in mice. J. Surg. Res. 2004, 120, 249–255, doi:10.1016/j.jss.2004.03.013.
[67]  Garbow, J.R.; Zhang, Z.; You, M. Detection of primary lung tumors in rodents by magnetic resonance imaging. Cancer Res. 2004, 64, 2740–2742, doi:10.1158/0008-5472.CAN-03-3258.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133