全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Diagnostics  2013 

Functional Imaging in Diagnostic of Orthopedic Implant-Associated Infections

DOI: 10.3390/diagnostics3040356

Keywords: orthopedic implant associated infections, diagnostic imaging

Full-Text   Cite this paper   Add to My Lib

Abstract:

Surgeries’ sterile conditions and perioperative antibiotic therapies decrease implant associated infections rates significantly. However, up to 10% of orthopedic devices still fail due to infections. An implant infection generates a high socio-economic burden. An early diagnosis of an infection would significantly improve patients’ outcomes. There are numerous clinical tests to diagnose infections. The “Gold Standard” is a microbiological culture, which requires an invasive sampling and lasts up to several weeks. None of the existing tests in clinics alone is sufficient for a conclusive diagnosis of an infection. Meanwhile, there are functional imaging modalities, which hold the promise of a non-invasive, quick, and specific infection diagnostic. This review focuses on orthopedic implant-associated infections, their pathogenicity, diagnosis and functional imaging.

References

[1]  Nelson, C.L.; McLaren, A.C.; McLaren, S.G.; Johnson, J.W.; Smeltzer, M.S. Is aseptic loosening truly aseptic? Clin. Orthop. Related Res. 2005, 437, 25–30.
[2]  Biant, L.C.; Bruce, W.J.; van der Wall, H.; William, R.W. Infection or allergy in the painful metal-on-metal total hip arthroplasty? J. Arthroplasty 2010, 25, 334–336.
[3]  Bauer, T.W.; Schils, J. The pathology of total joint arthroplasty. II. Mechanisms of implant failure. Skeletal Radiol. 1999, 28, 483–497, doi:10.1007/s002560050552.
[4]  Dunne, W.M., Jr. Bacterial adhesion: Seen any good biofilms lately? Clin. Microbiol. Rev. 2002, 15, 155–166, doi:10.1128/CMR.15.2.155-166.2002.
[5]  Harris, L.G.; Richards, R.G. Staphylococci and implant surfaces: A review. Injury 2006, 37, S3–S14, doi:10.1016/j.injury.2006.04.003.
[6]  Zimmerli, W.; Sendi, P. Pathogenesis of implant-associated infection: The role of the host. Semin. Immunopathol. 2011, 33, 295–306, doi:10.1007/s00281-011-0275-7.
[7]  Signore, A.; Mather, S.J.; Piaggio, G.; Malviya, G.; Dierckx, R.A. Molecular imaging of inflammation/infection: Nuclear medicine and optical imaging agents and methods. Chem. Rev. 2010, 110, 3112–3145, doi:10.1021/cr900351r.
[8]  Signore, A. About inflammation and infection. EJNMMI. Res. 2013, 3, 1–2, doi:10.1186/2191-219X-3-8.
[9]  Bejon, P.; Berendt, A.; Atkins, B.L.; Green, N.; Parry, H.; Masters, S.; Mclardy-Smith, P.; Gundle, R.; Byren, I. Two-stage revision for prosthetic joint infection: Predictors of outcome and the role of reimplantation microbiology. J. Antimicrob. Chemother. 2010, 65, 569–575, doi:10.1093/jac/dkp469.
[10]  Trampuz, A.; Zimmerli, W. Prosthetic joint infections: Update in diagnosis and treatment. Swiss. Med. Wkly. 2005, 135, 243–251.
[11]  Trampuz, A.; Zimmerli, W. Diagnosis and treatment of infections associated with fracture-fixation devices. Injury 2006, 37, S59–S66, doi:10.1016/j.injury.2006.04.010.
[12]  Esposito, S.; Leone, S. Prosthetic joint infections: Microbiology, diagnosis, management and prevention. Int. J. Antimicrob. Ag. 2008, 32, 287–293, doi:10.1016/j.ijantimicag.2008.03.010.
[13]  Zimmerli, W. Infection and musculoskeletal conditions: Prosthetic-joint-associated infections. Best. Pract. Res. Clin. Rheumatol. 2006, 20, 1045–1063, doi:10.1016/j.berh.2006.08.003.
[14]  Trampuz, A.; Widmer, A.F. Infections associated with orthopedic implants. Curr. Opin. Infect. Dis. 2006, 19, 349–356, doi:10.1097/01.qco.0000235161.85925.e8.
[15]  Lazzeri, E. Nuclear medicine imaging of vertebral infections: Role of radiolabelled biotin. Ph.D. Thesis, Groningen University Medical Center, Groningen, The Netherlands, 2009.
[16]  Woodford, N.; Wareham, D.W. Tackling antibiotic resistance: A dose of common antisense? J. Antimicrob. Chemother. 2009, 63, 225–229, doi:10.1093/jac/dkn467.
[17]  Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial biofilms: A common cause of persistent infections. Science 1999, 284, 1318–1322, doi:10.1126/science.284.5418.1318.
[18]  Aparna, M.S.; Yadav, S. Biofilms: Microbes and disease. Braz. J. Infect. Dis. 2008, 12, 526–530, doi:10.1590/S1413-86702008000600016.
[19]  Donlan, R.M. Biofilms: Microbial life on surfaces. Emerg. Infect. Dis. 2002, 8, 881–890, doi:10.3201/eid0809.020063.
[20]  Aslam, S. Effect of antibacterials on biofilms. Amer. J. Infect. Control 2008, 36, doi:10.1016/j.ajic.2008.10.002.
[21]  Shirtliff, M.; Leid, J.G. The Role of Biofilms in Device-Related Infections; Springer: Berlin, Heidelberg, Germany, 2008.
[22]  Geipel, U. Pathogenic organisms in hip joint infections. Int. J. Med. Sci. 2009, 6, 234–240, doi:10.7150/ijms.6.234.
[23]  Schmidmaier, G.; Lucke, M.; Wildemann, B.; Haas, N.P.; Raschke, M. Prophylaxis and treatment of implant-related infections by antibiotic-coated implants: A review. Injury 2006, 37, doi:10.1016/j.injury.2006.04.016.
[24]  Arciola, C.R. New concepts and new weapons in implant infections. Int. J. Artif. Organs 2009, 32, 533–536.
[25]  Cooper, H.J.; Della, V.C.J. Advances in the diagnosis of periprosthetic joint infection. Expert Opin. Med. Diagn. 2013, 7, 257–267, doi:10.1517/17530059.2013.783010.
[26]  Palestro, C.J.; Love, C.; Bhargava, K.K. Labeled leukocyte imaging: Current status and future directions. Q. J. Nucl. Med. Mol. Imaging 2009, 53, 105–123.
[27]  van Dam, G.M.; Themelis, G.; Crane, L.M.; Harlaar, N.J.; Pleijhuis, R.G.; Kelder, W.; Sarantopoulos, A.; de Jong, J.S.; Arts, H.J.G.; van der Zee, A.G.J.; et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: First in-human results. J. Nat. Med. 2011, 17, 1315–1319, doi:10.1038/nm.2472.
[28]  Hsu, W.; Hearty, T.M. Radionuclide imaging in the diagnosis and management of orthopaedic disease. J. Am. Acad. Orthop. Surg. 2012, 20, 151–159, doi:10.5435/JAAOS-20-03-151.
[29]  Kwee, T.C.; Kwee, R.M.; Alavi, A. FDG-PET for diagnosing prosthetic joint infection: Systematic review and metaanalysis. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 2122–2132, doi:10.1007/s00259-008-0887-x.
[30]  Burroni, L.; D’Alessandria, C.; Signore, A. Diagnosis of vascular prosthesis infection: PET or SPECT? J. Nucl. Med. 2007, 48, 1227–1229, doi:10.2967/jnumed.107.042002.
[31]  Zoccali, C.; Teori, G.; Salducca, N. The role of FDG-PET in distinguishing between septic and aseptic loosening in hip prosthesis: A review of literature. Int. Orthop. 2009, 33, 1–5, doi:10.1007/s00264-008-0575-2.
[32]  Scharf, S. SPECT/CT imaging in general orthopedic practice. Semin. Nucl. Med. 2009, 39, 293–307, doi:10.1053/j.semnuclmed.2009.06.002.
[33]  Ingui, C.J.; Shah, N.P.; Oates, M.E. Infection scintigraphy: Added value of single-photon emission computed tomography/computed tomography fusion compared with traditional analysis. J. Comput. Assist. Tomogr. 2007, 31, 375–380, doi:10.1097/01.rct.0000237815.11054.d2.
[34]  Delbeke, D.; Schoder, H.; Martin, W.H.; Wahl, R.L. Hybrid imaging (SPECT/CT and PET/CT): Improving therapeutic decisions. Semin. Nucl. Med. 2009, 39, 308–340, doi:10.1053/j.semnuclmed.2009.03.002.
[35]  Horger, M.; Eschmann, S.M.; Pfannenberg, C.; Storel, D.; Vonthein, R.; Claussen, C.D.; Bares, R. Added value of SPECT/CT in patients suspected of having bone infection: Preliminary results. Arch. Orthop. Traum. Surg. 2007, 127, 211–221, doi:10.1007/s00402-006-0259-6.
[36]  Schiesser, M.; Stumpe, K.D.M.; Trentz, O.; Kossmann, T.; von Schulthess, G.K. Detection of metallic implant-associated infections with FDG PET in patients with trauma: Correlation with microbiologic results. Radiology 2003, 226, 391–398, doi:10.1148/radiol.2262011939.
[37]  Israel, O.; Keidar, Z. PET/CT imaging in infectious conditions. Ann. N. Y. Acad. Sci. 2011, 1228, 150–166, doi:10.1111/j.1749-6632.2011.06026.x.
[38]  Basu, S.; Chryssikos, T.; Moghadam-Kia, S.; Zhuang, H.; Torigian, D.A.; Alavi, A. Positron emission tomography as a diagnostic tool in infection: Present role and future possibilities. Semin. Nucl. Med. 2009, 39, 36–51, doi:10.1053/j.semnuclmed.2008.08.004.
[39]  Linke, R.; Kuwert, T.; Uder, M.; Forst, R.; Wuest, W. Skeletal SPECT/CT of the peripheral extremities. Amer. J. Roentgenol. 2010, 194, doi:10.2214/AJR.09.3288.
[40]  Hughes, D.K. Nuclear medicine and infection detection: The relative effectiveness of imaging with 111In-oxine-, 99m Tc-HMPAO-, and 99m Tc-stannous fluoride colloid-labeled leukocytes and with 67Ga-citrate. J. Nucl. Med. Technol. 2003, 31, 196–201.
[41]  Makinen, T.J.; Lankinen, P.; P?yh?nen, T.; Jalava, J.; Aro, H.T.; Roivainen, A. Comparison of 18F-FDG and 68Ga PET imaging in the assessment of experimental osteomyelitis due to Staphylococcus aureus. Eur. J. Nucl. Med. Mol. Imaging 2005, 32, 1259–1268, doi:10.1007/s00259-005-1841-9.
[42]  Rennen, H.J.J.M.; Laverman, P.; van Eerd, J.E.M.; Oyen, W.J.G.; Corstens, F.H.M.; Boerman, O.C. PET imaging of infection with a HYNIC-conjugated LTB4 antagonist labeled with F-18 via hydrazone formation. Nucl. Med. Biol. 2007, 34, 691–695, doi:10.1016/j.nucmedbio.2007.04.012.
[43]  Diaz, L.A., Jr.; Foss, C.A.; Thornton, K.; Nimmagadda, S.; Endres, C.J.; Uzuner, O.; Seyler, T.M.; Ulrich, S.D.; Conway, J.; Bettegowda, C.; et al. Imaging of musculoskeletal bacterial infections by [124I]FIAU-PET/CT. PLoS One 2007, 2, doi:10.1371/journal.pone.0001007.
[44]  Jarrett, B.R.; Gustafsson, B.; Kukis, D.L.; Louie, A.Y. Synthesis of 64Cu-labeled magnetic nanoparticles for multimodal imaging. Bioconjug. Chem. 2008, 19, 1496–1504, doi:10.1021/bc800108v.
[45]  Bhargava, K.K.; Gupta, R.K.; Nichols, K.J.; Palestro, C.J. In vitro human leukocyte labeling with (64)Cu: An intraindividual comparison with (111)In-oxine and (18)F-FDG. Nucl. Med. Biol. 2009, 36, 545–549, doi:10.1016/j.nucmedbio.2009.03.001.
[46]  UBI29-41 Anti-microbial peptide (AMP) ubiquicidin synthetic fragment 29–41 of the amino acid sequence, is the most promising agent for the specific infection imaging according to the following publications
[47]  Lupetti, A.; Pauwels, E.K.; Nibbering, P.H.; Welling, M.M. 99m Tc-antimicrobial peptides: Promising candidates for infection imaging. Q. J. Nucl. Med. 2003, 47, 238–245.
[48]  Sierra, J.M.; Rodriguez-Puig, D.; Soriano, A.; Mensa, J.; Piera, C.; Vila, J. Accumulation of 99m Tc-ciprofloxacin in Staphylococcus aureus and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2008, 52, 2691–2692, doi:10.1128/AAC.00217-08.
[49]  Signore, A.; Chianelli, M.; D'Alessandria, C.; Annovazzi, A. Receptor targeting agents for imaging inflammation/infection: Where are we now? Q. J. Nucl. Med. Mol. Imaging 2006, 50, 236–242.
[50]  Palestro, C.J.; Love, C. Radionuclide imaging of musculoskeletal infection: Conventional agents. Semin. Musculoskelet. Radiol. 2007, 11, 335–352, doi:10.1055/s-2008-1060336.
[51]  Gemmel, F.; Dumarey, N.; Welling, M. Future diagnostic agents. Semin. Nucl. Med. 2009, 39, 11–26, doi:10.1053/j.semnuclmed.2008.08.005.
[52]  Gemmel, F.; van den Wyngaert, H.; Love, C.; Welling, M.M.; Gemmel, P.; Christopher, J.P. Prosthetic joint infections: Radionuclide state-of-the-art imaging. Eur. J. Nucl. Med. Mol. Imaging 2012, 39, 892–909, doi:10.1007/s00259-012-2062-7.
[53]  Arg-arginin, Lys-lysin aminoacids of the ubiquicidin peptide sequence.
[54]  Sasser, T.A.; van Avermaete, A.E.; White, A.; Chapman, S.; Johnson, J.R.; van Avermaete, T.; Gammon, S.T.; Leevy, W.M. Bacterial infection probes and imaging strategies in clinical nuclear medicine and preclinical molecular imaging. Curr. Top. Med. Chem. 2013, 13, 479–487.
[55]  Ciprofloxacin-efficient antibiotic of fluorquinolone group, kills bacteria by interfering with the enzymes (gyrases) that cause DNA to rewind after being copied, which stops DNA and protein synthesis.
[56]  Palestro, C.J.; Love, C.; Miller, T.T. Diagnostic imaging tests and microbial infections. Cell Microbiol. 2007, 9, 2323–2333, doi:10.1111/j.1462-5822.2007.01013.x.
[57]  Walker, R.C.; Jones-Jackson, L.B.; Martin, W.; Habibian, M.R.; Delbeke, D. New imaging tools for the diagnosis of infection. Future Microbiol. 2007, 2, 527–554.
[58]  Sonmezoglu, K.; Sonmezoglu, M.; Halac, M.; Akgün, I.; Türkmen, C.; ?nsel, C.; Kanmaz, B.; Solanki, K.; Britton, K.E.; Uslu, I. Usefulness of 99m Tc-ciprofloxacin (infecton) scan in diagnosis of chronic orthopedic infections: Comparative study with 99mTc-HMPAO leukocyte scintigraphy. J. Nucl. Med. 2001, 42, 567–574.
[59]  Britton, K.E.; Wareham, D.W.; Das, S.S. Concerns about 99m Tc-labelled ciprofloxacin for infection detection. Eur. J. Nucl. Med. 2001, 28, 779–781, doi:10.1007/s002590100520.
[60]  Passerini, D.R.; Garcia, C.; Calenda, M.; Vay, C.; Franco, M. Activity of levofloxacin and ciprofloxacin on biofilms and planktonic cells of Stenotrophomonas maltophilia isolates from patients with device-associated infections. Int. J. Antimicrob. Agents 2009, 34, 260–264, doi:10.1016/j.ijantimicag.2009.02.022.
[61]  Sharma, R.; Tewari, K.N.; Bhatnagar, A.; Mondal, A.; Mishra, A.K.; Singh, A.K.; Chopra, M.K.; Rawat, H.; Kashyap, R.; Tripathi, R.P. Tc-99m ciprofloxacin scans for detection of tubercular bone infection. Clin. Nucl. Med. 2007, 32, 367–370, doi:10.1097/01.rlu.0000259322.31974.e8.
[62]  Vila, J.; Sanchez-Cespedes, J.; Sierra, J.M.; Piqueras, M.; Nicolas, E.; Freixas, J.; Giralt, E. Antibacterial evaluation of a collection of norfloxacin and ciprofloxacin derivatives against multiresistant bacteria. Int. J. Antimicrob. Agents 2006, 28, 19–24, doi:10.1016/j.ijantimicag.2006.02.013.
[63]  Benitez, A.; Roca, M.; Martin-Comin, J. Labeling of antibiotics for infection diagnosis. Q. J. Nucl. Med. Mol. Imaging 2006, 50, 147–152.
[64]  Singh, B.; Mittal, B.R.; Bhattacharya, A.; Aggarwal, A.; Nagi, O.N.; Singh, A.K. Technetium-99m ciprofloxacin imaging in the diagnosis of postsurgical bony infection and evaluation of the response to antibiotic therapy: A case report. J. Orthop. Surg. 2005, 13, 190–194.
[65]  Larikka, M.J.; Ahonen, A.K.; Niemela, O.; Junila, J.A.; H?m?l?inen, M.M.; Syrj?l?, H.P. Specificity of 99mTc-ciprofloxacin imaging. J. Nucl. Med. 2003, 44, 1368–1369.
[66]  Larikka, M. Diagnosis of orthopaedic prosthesis infections with radionuclide techniques; clinical application of various imaging methods. Ph.D. Thesis, University of Oulu, Oulu, Finland, 2003.
[67]  Sarda, L.; Cremieux, A.C.; Lebellec, Y.; Meulemans, A.; Rachida, L.; Hayem, G.; Genin, R.; Delahaye, N.; Huten, D.; le Guludec, D. Inability of 99m Tc-ciprofloxacin scintigraphy to discriminate between septic and sterile osteoarticular diseases. J. Nucl. Med. 2003, 44, 920–926.
[68]  Britton, K.E.; Das, S.S.; Solanki, K.K. Ability of 99m Tc-ciprofloxacin scintigraphy to discriminate between septic and sterile osteoarticular diseases. J. Nucl. Med. 2004, 45, 922–923.
[69]  Palestro, C.J. Radionuclide imaging of infection: In search of the grail. J. Nucl. Med. 2009, 50, 671–673, doi:10.2967/jnumed.108.058297.
[70]  Welling, M.; Stokkel, M.; Balter, J.; Sarda-Mantel, L.; Meulemans, A.; le Guludec, D. The many roads to infection imaging. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 848–849, doi:10.1007/s00259-007-0695-8.
[71]  Melendez-Alafort, L.; Nadali, A.; Pasut, G.; Zangoni, E.; de Caro, R.; Cariolato, L.; Giron, M.C.; Castagliuolo, I.; Veronese, F.M.; Mazzi, U. Detection of sites of infection in mice using 99m Tc-labeled PN(2)S-PEG conjugated to UBI and 99mTc-UBI: A comparative biodistribution study. Nucl. Med. Biol. 2009, 36, 57–64, doi:10.1016/j.nucmedbio.2008.10.011.
[72]  Sarda-Mantel, L.; Saleh-Mghir, A.; Welling, M.M.; Meulemans, A.; Virgneaud, J.M.; Raguin, O.; Hervatin, F.; Martet, G.; Chau, F.; Lebtahi, R.; et al. Evaluation of 99m Tc-UBI 29–41 scintigraphy for specific detection of experimental Staphylococcus aureus prosthetic joint infections. Eur. J. Nucl. Med. Mol. Imaging 2007, 34, 1302–1309, doi:10.1007/s00259-007-0368-7.
[73]  Akhtar, M.S.; Qaisar, A.; Irfanullah, J.; Iqbal, J.; Khan, B.; Jehangir, M.; Nadeem, M.A.; Khan, M.A.; Afzal, M.S.; Khan, M.A.; Afzal, M.S.; ul-Haq, I.; Imran, M.B. Antimicrobial peptide 99m Tc-ubiquicidin 29–41 as human infection-imaging agent: Clinical trial. J. Nucl. Med. 2005, 46, 567–573.
[74]  Welling, M.M.; Visentin, R.; Feitsma, H.I.; Lupetti, A.; Pauwels, E.K.J.; Nibbering, P.H. Infection detection in mice using 99m Tc-labeled HYNIC and N2S2 chelate conjugated to the antimicrobial peptide UBI 29–41. Nucl. Med. Biol. 2004, 31, 503–509, doi:10.1016/j.nucmedbio.2003.11.009.
[75]  Nibbering, P.H.; Welling, M.M.; Paulusma-Annema, A.; Brouwer, C.P.J.M.; Lupetti, A.; Pauwels, E.K.J. 99m Tc-Labeled UBI 29–41 peptide for monitoring the efficacy of antibacterial agents in mice infected with Staphylococcus aureus. J. Nucl. Med. 2004, 45, 321–326.
[76]  Akhtar, M.S.; Iqbal, J.; Khan, M.A.; Irfanullah, J.; Jehangir, M.; Khan, B.; ul-Haq, I.; Muhammad, G.; Nadeem, M.A.; Afzal, M.S.; Imran, M.B. 99m Tc-labeled antimicrobial peptide ubiquicidin (29–41) accumulates less in Escherichia coli infection than in Staphlococcus aureus infection. J. Nucl. Med. 2004, 45, 849–856.
[77]  Welling, M.M.; Mongera, S.; Lupetti, A.; Balter, H.S.; Bonetto, V.; Mazzi, U.; Pauwels, E.K.J.; Nibbering, P.H. Radiochemical and biological characteristics of 99m Tc-UBI 29–41 for imaging of bacterial infections. Nucl. Med. Biol. 2002, 29, 413–422, doi:10.1016/S0969-8051(02)00292-5.
[78]  Akhtar, M.S.; Imran, M.B.; Nadeem, M.A.; Shahid, A. Antimicrobial peptides as infection imaging agents: Better than radiolabeled antibiotics. Int. J. Pept. 2012, doi:10.1155/2012/965238.
[79]  Arteaga de Murphy, C.; Gemmel, F.; Balter, J. Clinical trial of specific imaging of infections. Nucl. Med. Commun. 2010, 31, 726–733, doi:10.1097/MNM.0b013e32833a3d7f.
[80]  El Maghraby, T.A.; Moustafa, H.M.; Pauwels, E.K. Nuclear medicine methods for evaluation of skeletal infection among other diagnostic modalities. Q. J. Nucl. Med. Mol. Imaging 2006, 50, 167–192.
[81]  Palestro, C.J.; Love, C.; Tronco, G.G.; Tomas, M.B.; Rini, J.N. Combined labeled leukocyte and technetium 99m sulfur colloid bone marrow imaging for diagnosing musculoskeletal infection. Radiographics 2006, 26, 859–870, doi:10.1148/rg.263055139.
[82]  Simons, K.S.; Pickkers, P.; Bleeker-Rovers, C.P.; Oyen, W.J.G.; van der Hoeven, J.G. F-18-fluorodeoxyglucose positron emission tomography combined with CT in critically ill patients with suspected infection. Intens. Care Med. 2010, 36, 504–511, doi:10.1007/s00134-009-1697-8.
[83]  Chryssikos, T.; Parvizi, J.; Ghanem, E.; Newberg, A.; Zhuang, H.; Alavi, A. FDG-PET imaging can diagnose periprosthetic infection of the hip. Clin. Orthop. Related Res. 2008, 466, 1338–1342, doi:10.1007/s11999-008-0237-0.
[84]  Love, C.; Marwin, S.E.; Palestro, C.J. Nuclear medicine and the infected joint replacement. Semin. Nucl. Med. 2009, 39, 66–78, doi:10.1053/j.semnuclmed.2008.08.007.
[85]  Gemmel, F.; Dumarey, N.; Palestro, C.J. Radionuclide imaging of spinal infections. Eur. J. Nucl. Med. Mol. Imaging 2006, 33, 1226–1237, doi:10.1007/s00259-006-0098-2.
[86]  van der Bruggen, W.; Bleeker-Rovers, C.P.; Boerman, O.C.; Gotthardt, M.; Oyen, W.J.G. PET and SPECT in osteomyelitis and prosthetic bone and joint infections: A systematic review. Semin. Nucl. Med. 2010, 40, 3–15, doi:10.1053/j.semnuclmed.2009.08.005.
[87]  Glaudemans, A.W.; Signore, A. FDG-PET/CT in infections: The imaging method of choice? Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 1986–1991, doi:10.1007/s00259-010-1587-x.
[88]  Kwee, T.C.; Basu, S.; Torigian, D.A.; Zhuang, H.; Alavi, A. FDG PET imaging for diagnosing prosthetic joint infection: Discussing the facts, rectifying the unsupported claims and call for evidence-based and scientific approach. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 464–466, doi:10.1007/s00259-012-2319-1.
[89]  Bleeker-Rovers, C.P.; Vos, F.J.; Corstens, F.H.; Oyen, W.J.G. Imaging of infectious diseases using [18F] fluorodeoxyglucose PET. Q. J. Nucl. Med. Mol. Imaging 2008, 52, 17–29.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133