In Vitro Screening of the Apatite-Forming Ability, Biointeractivity and Physical Properties of a Tricalcium Silicate Material for Endodontics and Restorative Dentistry
Aim: Calcium silicate-based materials are hydraulic self-setting materials with physico-chemical properties suitable for endodontic surgery and good biological/clinical outcomes. The study aim was to evaluate the bio-properties (biointeractivity and apatite-forming ability) and selected physical properties (porosity, water sorption, solubility, and setting time) of Biodentine, a tricalcium silicate material for endodontics and restorative dentistry, compared to that of ProRoot MTA (Mineral Trioxide Aggregate) as gold standard material. Methods: Biodentine and ProRoot MTA pastes were prepared and analyzed for calcium release and alkalinizing activity (3 h–28 days), setting time, water sorption, porosity, solubility, surface microstructure and composition, and apatite-forming ability in simulated body fluid. Results: Biodentine showed higher calcium release, alkalinizing activity, and solubility but higher open and apparent porosity, water sorption, and a markedly shorter setting time. Calcium phosphate (CaP) deposits were noted on material surfaces after short ageing times. A CaP coating composed of spherulites was detected after 28 days. The thickness, continuity, and Ca/P ratio of the coating differed markedly between the materials. Biodentine showed a coating composed by denser but smaller spherulites, while ProRoot MTA showed large but less dense aggregates of spherulitic deposits. Conclusions: Biodentine showed a pronounced ability to release calcium and extended alkalinizing activity interlinked with its noticeable porosity, water sorption, and solubility: open porosities provide a broad wet biointeractive surface for the release of the calcium and hydroxyl ions involved in the formation of a CaP mineral. Biodentine is a biointeractive tricalcium silicate material with interesting chemical-physical properties and represents a fast-setting alternative to the conventional calcium silicate MTA-like cements.
References
[1]
Parirokh, M.; Torabinejad, M. Mineral trioxide aggregate: A comprehensive literature review - Part I: Chemical, physical, and antibacterial properties. J. Endod.?2010, 36, 16–27, doi:10.1016/j.joen.2009.09.006.
[2]
Gandolfi, M.G.; van Landuyt, K.; Taddei, P.; Modena, E.; van Meerbeek, B.; Prati, C. ESEM-EDX and Raman techniques to study MTA calcium-silicate cements in wet conditions and in real-time. J. Endod.?2010, 36, 851–857, doi:10.1016/j.joen.2009.12.007.
[3]
Torabinejad, M.; White, D.J. Tooth filling material and method of use. Patent US 1998/5769638 and WO 94/24955, 1993.
[4]
Camilleri, J.; Gandolfi, M.G. Evaluation of the radiopacity of calcium silicate cements containing different radiopacifiers. Int. Endod. J.?2010, 43, 21–30, doi:10.1111/j.1365-2591.2009.01621.x.
[5]
Primus, C. Dental Material. Patent WO 02/056838, US 2004/0226478. (provisional application filed in 2001), 2004.
[6]
Parirokh, M.; Torabinejad, M. Mineral trioxide aggregate: A comprehensive literature review - Part III: Clinical applications, drawbacks, and mechanism of action. J. Endod.?2010, 36, 400–413, doi:10.1016/j.joen.2009.09.009.
[7]
Mente, J.; Geletneky, B.; Ohle, M.; Koch, M.J.; Ding, P.G.; Wolff, D.; Dreyhaupt, J.; Martin, N.; Staehle, H.J.; Pfefferle, T. Mineral trioxide aggregate or calcium hydroxide direct pulp capping: An analysis of the clinical treatment outcome. J. Endod.?2010, 36, 806–813, doi:10.1016/j.joen.2010.02.024.
[8]
Torabinejad, M.; Parirokh, M. Mineral trioxide aggregate: A comprehensive literature review - Part II: Leakage and biocompatibility investigations. J. Endod.?2010, 36, 190–202, doi:10.1016/j.joen.2009.09.010.
[9]
Okiji, T.; Yoshiba, K. Reparative dentinogenesis induced by mineral trioxide aggregate: A review from the biological and physicochemical points of view. Int. J. Dent.?2009, 2009, 1–12, doi:10.1155/2009/464280.
[10]
Gandolfi, M.G.; Shah, S.N.; Feng, R.; Prati, C.; Akintoye, S.O. Biomimetic calcium-silicate cements support differentiation of human orofacial mesenchymal stem cells. J. Endod.?2011, 37, 1102–1108, doi:10.1016/j.joen.2011.05.009.
[11]
Gandolfi, M.G.; Ciapetti, G.; Taddei, P.; Perut, F.; Tinti, A.; Cardoso, M.; van Meerbek, B.; Prati, C. Apatite formation on bioactive calcium-silicate cements for dentistry affects surface topography and human marrow stromal cells proliferation. Dent. Mater.?2010, 26, 974–992, doi:10.1016/j.dental.2010.06.002.
[12]
Gandolfi, M.G.; Ciapetti, G.; Perut, F.; Taddei, P.; Modena, E.; Rossi, P.L.; Prati, C. Biomimetic calcium-silicate cements aged in simulated body solutions. Osteoblasts response and analyses of apatite coating. J. Appl. Biomater. Biomech.?2009, 7, 160–170.
[13]
Moghadame-Jafari, S.; Mantellini, M.G.; Botero, T.M.; McDonald, N.J.; Nor, J.E. Effect of ProRoot MTA on pulp cell apoptosis and proliferation in vitro. J. Endod.?2005, 31, 387–391, doi:10.1097/01.don.0000145423.89539.d7.
[14]
Maeda, H.; Nakano, T.; Tomokiyo, A.; Fujii, S.; Wada, N.; Monnouchi, S.; Hori, K.; Akamine, A. Mineral trioxide aggregate induces bone morphogenetic protein-2 expression and calcification in human periodontal ligament cells. J. Endod.?2010, 36, 647–652, doi:10.1016/j.joen.2009.12.024.
[15]
AL-Rabeah, E.; Perinpanayagam, H.; MacFarland, D. Human alveolar bone cells interact with ProRoot and tooth-colored MTA. J. Endod.?2006, 32, 872–875, doi:10.1016/j.joen.2006.03.019.
[16]
Paranjpe, A.; Smoot, T.; Zhang, H.; Johnson, J.D. Direct contact with mineral trioxide aggregate activates and differentiates human dental pulp cells. J. Endod.?2011, 37, 1691–1695, doi:10.1016/j.joen.2011.09.012.
[17]
Hakki, S.S.; Bozkurt, S.B.; Hakki, E.E.; Belli, S. Effects of mineral trioxide aggregate on cell survival, gene expression associated with mineralized tissues, and biomineralization of cementoblasts. J. Endod.?2009, 35, 513–519, doi:10.1016/j.joen.2008.12.016.
[18]
Gandolfi, M.G.; Taddei, P.; Siboni, F.; Modena, E.; Ciapetti, G.; Prati, C. Development of the foremost light-curable calcium-silicate MTA cement as root-end in oral surgery. Chemical-physical properties, bioactivity and biological behaviour. Dent. Mater.?2011, 27, e134–e157, doi:10.1016/j.dental.2011.03.011.
[19]
Gandolfi, M.G. A new method for evaluating the pulpward diffusion of Ca and OH ions through coronal dentin into the pulp. Iran. Endod. J.?2012, 7, 189–197.
[20]
Gandolfi, M.G.; Taddei, P.; Modena, E.; Siboni, F.; Prati, C. Biointeractivity-related vs. chemi/physisorption-related apatite precursor-forming ability of current root end filling materials. J. Biomed. Mater. Res. B?2013, 101B, 1107–1123.
[21]
Gandolfi, M.G.; Taddei, P.; Tinti, A.; Prati, C. Apatite-forming ability of ProRoot MTA. Int. Endod. J.?2010, 43, 917–929, doi:10.1111/j.1365-2591.2010.01768.x.
[22]
Gandolfi, M.G.; Taddei, P.; Tinti, A.; Dorigo De Stefano, E.; Rossi, P.L.; Prati, C. Kinetics of apatite formation on a calcium-silicate cement for root-end filling during ageing in physiological-like phosphate solutions. Clin. Oral Investig.?2010, 14, 659–668, doi:10.1007/s00784-009-0356-3.
[23]
Prati, C.; Siboni, F.; Polimeni, A.; Bossù, M.; Gandolfi, M.G. Use of calcium-containing endodontic sealers as apical barrier in fluid contaminated wide-open apices. J. Appl. Biomater. Funct. Mater.?2014, 2. in press.
[24]
Pelliccioni, G.A.; Vellani, C.P.; Gatto, M.R.; Gandolfi, M.G.; Marchetti, C.; Prati, C. ProRoot mineral trioxide aggregate cement used as a retrograde filling without addition of water: An in vitro evaluation of its microleakage. J. Endod.?2007, 33, 1082–1085, doi:10.1016/j.joen.2007.04.009.
[25]
Gandolfi, M.G.; Iacono, F.; Agee, K.; Siboni, F.; Tay, F.; Pashley, D.H.; Prati, C. Setting time and expansion in different soaking media of experimental accelerated calcium-silicate cements and ProRoot MTA. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.?2009, 108, e39–e45.
[26]
Gandolfi, M.G.; Prati, C. MTA and F-doped MTA cements used as sealers with warm gutta-percha. Long-term sealing ability study. Int. Endod. J.?2010, 43, 889–901, doi:10.1111/j.1365-2591.2010.01763.x.
[27]
Gilles, R.; Olivier, M. Dental composition. Patent WO 2011/124841, US 2013/0025498, 2011.
[28]
Koubi, G.; Colon, P.; Franquin, J.C.; Hartmann, A.; Richard, G.; Faure, M.O.; Lambert, G. Clinical evaluation of the performance and safety of a new dentine substitute, Biodentine, in the restoration of posterior teeth—a prospective study. Clin. Oral Investig.?2013, 17, 243–249, doi:10.1007/s00784-012-0701-9.
[29]
Nowicka, A.; Lipski, M.; Parafiniuk, M.; Sporniak-Tutak, K.; Lichota, D.; Kosierkiewicz, A.; Kaczmarek, W.; Buckowska-Radlinska, J. Response of human dental pulp capped with Biodentine and mineral trioxide aggregate. J. Endod.?2013, 39, 743–747, doi:10.1016/j.joen.2013.01.005.
[30]
Tran, X.V.; Gorin, C.; Willig, C.; Baroukh, B.; Pellat, B.; Decup, F.; Opsahl Vital, S.; Chaussain, C.; Boukpessi, T. Effect of a calcium-silicate-based restorative cement on pulp repair. J. Dent. Res.?2012, 91, 1166–1171, doi:10.1177/0022034512460833.
[31]
Laurent, P.; Camps, J.; de Méo, M.; Déjou, J.; About, I. Induction of specific cell responses to a Ca3SiO5-based posterior restorative material. J. Dent. Res. 2008, 24, 1486–1494.
[32]
The International Organization for Standardization. . ISO/FDIS 23317:2007(E), Available online: http://www3.chubu.ac.jp/documents/faculty/kokubo_tadashi/home/33/33_5e3f7c01288352282eca51295fc47f1a.pdf (accessed on 6 December 2013).
[33]
Rashid, F.; Shiba, H.; Mizuno, N.; Mouri, Y.; Fujita, T.; Shinohara, H.; Ogawa, T.; Kawaguchi, H.; Kurihara, H. The effect of extracellular calcium ion on gene expression of bone-related proteins inhuman pulp cells. J. Endod.?2003, 29, 104–107, doi:10.1097/00004770-200302000-00004.
[34]
Schr?der, U. Effects of calcium hydroxide-containing pulp-capping agents on pulp cell migration, proliferation, and differentiation. J. Dent. Res.?1985, 64, 541–548.
[35]
Mizuno, M.; Banzai, Y. Calcium ion release from calcium hydroxide stimulated fibronectin gene expression in dental pulp cells and the differentiation of dental pulp cells to mineralized tissue forming cells by fibronectin. Int. Endod. J.?2008, 41, 933–938, doi:10.1111/j.1365-2591.2008.01420.x.
[36]
Matsumoto, S.; Hayashi, M.; Suzuki, Y.; Suzuki, N.; Maeno, M.; Ogiso, B. Calcium ions released from mineral trioxide aggregate convert the differentiation pathway of C2C12 Cells into osteoblast lineage. J. Endod.?2013, 39, 68–75, doi:10.1016/j.joen.2012.10.006.
[37]
Jung, G.Y.; Park, Y.J.; Han, J.S. Effects of HA released calcium ion on osteoblast differentiation. J. Mater. Sci. Mater. Med.?2010, 21, 1649–1654, doi:10.1007/s10856-010-4011-y.
[38]
Eyckmans, J.; Roberts, S.J.; Bolander, J.; Schrooten, J. Mapping calcium phosphate activated gene networks as a strategy for targeted osteoinduction of human progenitors. Biomaterials?2013, 34, 4612–4621, doi:10.1016/j.biomaterials.2013.03.011.
[39]
Nakamura, S.; Matsumoto, T.; Sasaki, J.; Egusa, H.; Lee, K.Y.; Nakano, T.; Sohmura, T.; Nakahira, A. Effect of calcium ion concentrations on osteogenic differentiation and hematopoietic stem cell niche-related protein expression in osteoblasts. Tissue Eng. Part A?2010, 16, 2467–2473, doi:10.1089/ten.tea.2009.0337.
[40]
Takita, T.; Hayashi, M.; Takeichi, O.; Ogiso, B.; Suzuki, N.; Otsuka, K.; Ito, K. Effect of mineral trioxide aggregate on proliferation of cultured human dental pulp cells. Int. Endod. J.?2006, 39, 415–422, doi:10.1111/j.1365-2591.2006.01097.x.
Estrela, C.; Holland, R. Calcium hydroxide study based on scientific evidences. J. Appl. Oral Sci.?2003, 11, 269–282, doi:10.1590/S1678-77572003000400002.
[43]
Bonson, S.; Jeansonne, B.G.; Lallier, T.E. Root-end filling materials alter fibroblast differentiation. J. Dent. Res.?2004, 83, 408–413, doi:10.1177/154405910408300511.
[44]
Zanini, M.; Sautier, J.M.; Berdal, A.; Simon, S. Biodentine induces immortalized murine pulp cell differentiation into odontoblast-like cells and stimulates biomineralization. J. Endod.?2012, 38, 1220–1226, doi:10.1016/j.joen.2012.04.018.
[45]
Du, R.; Wu, T.; Liu, W.; Li, L.; Jiang, L.; Peng, W.; Chang, J.; Zhu, Y. Role of the extracellular signal-regulated kinase 1/2 pathway in driving tricalcium silicate-induced proliferation and biomineralization of human dental pulp cells in vitro. J. Endod.?2013, 39, 1023–1029, doi:10.1016/j.joen.2013.03.002.
[46]
Pérard, M.; Le Clerc, J.; Meary, F.; Pérez, F.; Tricot-Doleux, S.; Pellen-Mussi, P. Spheroid model study comparing the biocompatibility of Biodentine and MTA. J. Mater. Sci. Mater. Med.?2013, 24, 1527–1534, doi:10.1007/s10856-013-4908-3.
[47]
Hakki, S.S.; Bozkurt, B.S.; Gandolfi, M.G.; Prati, C.; Belli, S. The response of cementoblasts to calcium phosphate resin-based and calcium silicate-based commercial sealers. Int. Endod. J.?2013, 46, 242–252, doi:10.1111/j.1365-2591.2012.02122.x.
[48]
Abdullah, D.; Ford, T.R.; Papaioannou, S.; Nicholson, J.; McDonald, F. An evaluation of accelerated Portland cement as a restorative material. Biomaterials?2002, 23, 4001–4010, doi:10.1016/S0142-9612(02)00147-3.
[49]
Combes, C.; Miao, B.; Bareille, R.; Rey, C. Preparation, physical-chemical characterisation and cytocompatibility of calcium carbonate cements. Biomaterials?2006, 27, 1945–1954, doi:10.1016/j.biomaterials.2005.09.026.
[50]
Dey, A.; de With, G.; Sommerdijk, N.A. In situ techniques in biomimetic mineralization studies of calcium carbonate. Chem. Soc. Rev.?2010, 39, 397–409, doi:10.1039/b811842f.
[51]
Gandolfi, M.G.; Siboni, F.; Prati, C. Chemical-physical properties of TheraCal, a novel light-curable MTA-like material for pulp-capping. Int. Endod. J.?2012, 45, 571–579, doi:10.1111/j.1365-2591.2012.02013.x.
[52]
Danesh, G.; Dammaschke, T.; Gerth, H.U.V.; Zandbiglari, T.; Schafer, E. A comparative study of selected properties of ProRoot mineral trioxide aggregate and two Portland cements. Int. Endod. J.?2006, 39, 213–219, doi:10.1111/j.1365-2591.2006.01076.x.
[53]
Bogue, R.H.; Lerch, W. Hydration of Portland cement compounds. Ind. Eng. Chem.?1934, 26, 837–847, doi:10.1021/ie50296a007.
Gandolfi, M.G.; Parrilli, A.P.; Fini, M.; Prati, C.; Dummer, P.M.H. 3D micro-CT analysis of the interface voids associated with Thermafil root fillings used with AH Plus or a flowable MTA sealer. Int. Endod. J.?2013, 46, 253–263, doi:10.1111/j.1365-2591.2012.02124.x.