全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Crystals  2013 

Zintl Salts Ba2P7X (X = Cl, Br, and I): Synthesis, Crystal, and Electronic Structures

DOI: 10.3390/cryst3030431

Keywords: Zintl phase, crystal structure, P7 cluster, heptaphosphanortricyclane, electronic structure, electron localization function

Full-Text   Cite this paper   Add to My Lib

Abstract:

Two barium phosphide halides, Ba 2P 7Br and Ba 2P 7I, were synthesized and structurally characterized by single crystal X-ray diffraction. Both compounds crystallize in the monoclinic space group P2 1/ m (No. 11) and are isostructural to Ba 2P 7Cl. The crystal structures of Ba 2P 7X (X = Cl, Br, I) feature the presence of heptaphosphanortricyclane P 7 3? clusters along with halogen anions and barium cations. According to the Zintl concept, Ba 2P 7X compounds are electron-balanced semiconductors. Quantum-chemical calculations together with UV-Visible spectroscopy confirm the title compounds are wide bandgap semiconductors. The bonding in the P 7 3? clusters was analyzed by means of electron localization function. The elemental compositions were confirmed using energy dispersive X-ray spectroscopy.

References

[1]  P?ttgen, R.; H?nle, W.; von Schnering, H.G. Phosphides: Solid State Chemistry. In Encyclopedia of Inorganic Chemistry, 2nd ed.; King, R.B., Ed.; Wiley: Chichester, UK, 2005; volume 8, pp. 4255–4308.
[2]  Von Schnering, H.G.; Hoenle, W. Bridging chasms with polyphosphides. Chem. Rev. 1988, 88, 243–273, doi:10.1021/cr00083a012.
[3]  Dahlmann, W.; von Schnering, H.G. Die Polyphosphide SrP3 und Ba3P14. Naturwissenschaften 1973, 60, 429–429, doi:10.1007/BF00623557.
[4]  Manriquez, V.; H?nle, W.; von Schnering, H.G. Trilithiumheptaphosphid Li3P7: Darstellung, Struktur und Eigenschaften. Z. Anorg. Allg. Chem. 1986, 539, 95–109, doi:10.1002/zaac.19865390810.
[5]  Scharfe, S.; Kraus, F.; Stegmaier, S.; Schier, A.; F?ssler, T.F. Zintl ions, cage compounds, and intermetalloid clusters of group 14 and group 15 elements. Angew. Chem. Int. Ed. 2011, 50, 3630–3670, doi:10.1002/anie.201001630.
[6]  Shatruk, M.M.; Kovnir, K.A.; Shevelkov, A.V.; Popovkin, B.A. Ag3SnP7: A polyphosphide with a unique (P7) chain and a novel Ag3Sn heterocluster. Angew. Chem. Int. Ed. 2000, 39, 2508–2509, doi:10.1002/1521-3773(20000717)39:14<2508::AID-ANIE2508>3.0.CO;2-O.
[7]  Lange, S.; Sebastian, C.P.; Zhang, L.; Eckert, H.; Nilges, T. Ag3SnCuP10: [Ag3Sn] tetrahedra embedded between adamantane-type [P10] cages. Inorg. Chem. 2006, 45, 5878–5885, doi:10.1021/ic060380a.
[8]  Lange, S.; Bawohl, M.; Weihrich, R.; Nilges, T. Mineralization routes to polyphosphides: Cu2P20 and Cu5InP16. Angew. Chem. Int. Ed. 2008, 47, 5654–5657, doi:10.1002/anie.200705540.
[9]  Dewalsky, M.V.; Jeitschko, W.; Wortmann, U. The metallic polyphosphide titanium nickel phosphide (Ti2NiP5). Chem. Mater. 1991, 3, 316–319, doi:10.1021/cm00014a022.
[10]  Eisenmann, B.; R??ler, U. Ein Erdalkalimetallpolyphosphid ungew?hnlicher Zusammensetzung: Die Kristallstruktur von Ba5P9. Z. Anorg. Allg. Chem. 2003, 629, 459–462, doi:10.1002/zaac.200390075.
[11]  Chen, X.; Zhu, L.; Yamanaka, S. High-pressure synthesis and structural characterization of three new polyphosphides, α-SrP3, BaP8, and LaP5. J. Solid State Chem. 2003, 173, 449–455, doi:10.1016/S0022-4596(03)00142-7.
[12]  Eschen, M.; Jeitschko, W. Au2PbP2, Au2TlP2, and Au2HgP2: Ternary gold polyphosphides with lead, thallium, and mercury in the oxidation state zero. J. Solid State Chem. 2002, 165, 238–246, doi:10.1006/jssc.2001.9497.
[13]  Kovnir, K.; Stockert, U.; Budnyk, S.; Prots, Y.; Baitinger, M.; Paschen, S.; Shevelkov, A.V.; Grin, Y. Introducing a magnetic guest to a tetrel-free clathrate: Synthesis, structure, and properties of EuxBa8?xCu16P30 (0 ≤ x ≤ 1.5). Inorg. Chem. 2011, 50, 10387–10396, doi:10.1021/ic201474h.
[14]  Fulmer, J.; Kaseman, D.C.; Dolyniuk, J.; Lee, K.; Sen, S.; Kovnir, K. BaAu2P4: Layered Zintl Polyphosphide with Infinite Chains. Inorg. Chem. 2013, 52, 7061–7067, doi:10.1021/ic400584w.
[15]  Kraus, F.; Korber, N. The Chemical Bond in Polyphosphides: Crystal Structures, the Electron Localization Function, and a New View of Aromaticity in P42? and P5?. Chem. A Eur. J. 2005, 11, 5945–5959, doi:10.1002/chem.200500414.
[16]  He, H.; Tyson, C.; Bobev, S. New compounds with [As7]3? clusters: Synthesis and crystal structures of the Zintl phases Cs2NaAs7, Cs4ZnAs14 and Cs4CdAs14. Crystals 2011, 1, 87–98, doi:10.3390/cryst1030087.
[17]  Knapp, C.M.; Large, J.S.; Rees, N.H.; Goicoechea, J.M. A versatile salt-metathesis route to heteroatomic clusters derived from phosphorus and arsenic Zintl anions. Dalton Trans. 2011, 40, 735–745, doi:10.1039/c0dt00918k.
[18]  Hirschle, C.; R?hr, C. Darstellung und Kristallstruktur der Bekannten Zintl-Phasen Cs3Sb7 und Cs4Sb2. Z. Anorg. Allg. Chem. 2000, 626, 1992–1998, doi:10.1002/1521-3749(200009)626:9<1992::AID-ZAAC1992>3.0.CO;2-G.
[19]  Kauzlarich, S.M. Chemistry, Structure, and Bonding of Zintl Phases and Ion; John Wiley and Sons Ltd.: New York, NY, USA, 1996.
[20]  Miller, G.J.; Schmidt, M.W.; Wang, F.; You, T.S. Quantitative advances in the Zintl-Klemm formalism. Struct. Bond. 2011, 139, 1–55.
[21]  Von Schnering, H.G.; Menge, G. Dibariumheptaphosphidchlorid Ba2P7Cl, eine Verbindung mit dem polycyclischen Anion P73?. Z. Anorg. Allg. Chem. 1981, 481, 33–40, doi:10.1002/zaac.19814811005.
[22]  Becke, A.D.; Edgecombe, K.E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 1990, 92, 5397–5403, doi:10.1063/1.458517.
[23]  Savin, A.; Jepsen, O.; Flad, J.; Anderson, O.K.; Preu?, H.; von Schnering, H.G. Electron localization in solid-state structures of the elements: The diamond structure. Angew. Chem. Int. Ed. 1992, 31, 187–188, doi:10.1002/anie.199201871.
[24]  Savin, A.; Nesper, R.; Wengert, S.; F?ssler, T.F. ELF: The electron localization function. Angew. Chem. Int. Ed. 1997, 36, 1808–1832, doi:10.1002/anie.199718081.
[25]  Kovnir, K.; Kolen’ko, Y.V.; Baranov, A.I.; Neira, I.S.; Sobolev, A.V.; Yoshimura, M.; Presniakov, I.A.; Shevelkov, A.V. Sn4As3 revisited: Solvothermal synthesis and crystal and electronic structure. J. Solid State Chem. 2009, 182, 630–639, doi:10.1016/j.jssc.2008.12.007.
[26]  Morales, A.; Mora, E.; Pal, U. Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Rev. Mex. Fis. S. 2007, 53, 18–22.
[27]  Nobbs, J.H. Kubelka—Munk theory and the prediction of reflectance. Rev. Prog. Color. Relat. Top. 1985, 15, 66–75, doi:10.1111/j.1478-4408.1985.tb03737.x.
[28]  SMART and SAINT. Bruker AXS Inc. Madison, WI, USA, 2007.
[29]  Sheldrick, G. A short history of SHELX. Acta Crystallogr. A 2008, 64, 112–122, doi:10.1107/S0108767307043930.
[30]  Jepsen, O.; Burkhardt, A.; Andersen, O.K. The Program TB-LMTO-ASA, Version 4.7; Max-Planck-Institut für Festk?rperforschung: Stuttgart, Germany, 1999.
[31]  Barth, U.V.; Hedin, L. A local exchange-correlation potential for the spin polarized case. J. Phys. C Solid State Phys. 1972, 5, doi:10.1088/0022-3719/5/13/012.
[32]  Paraview: Parallel visualization application, version 3.8.1 64 bit. Available online: http://paraview.org..
[33]  Baranov, A.I. Visualization Plug-in for ParaView, Version 3.4.11; Springer: Dresden, Germany, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133