全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Crystals  2013 

Electronic Origin of the Orthorhombic Cmca Structure in Compressed Elements and Binary Alloys

DOI: 10.3390/cryst3030419

Keywords: crystal structure, Hume-Rothery phases, structure stability

Full-Text   Cite this paper   Add to My Lib

Abstract:

Formation of the complex structure with 16 atoms in the orthorhombic cell, space group Cmca (Pearson symbol oC16), was experimentally found under high pressure in the alkali elements (K, Rb, Cs) and polyvalent elements of groups IV (Si, Ge) and V (Bi). Intermetallic phases with this structure form under pressure in binary Bi-based alloys (Bi-Sn, Bi-In, Bi-Pb). Stability of the Cmca- oC16 structure is analyzed within the nearly free-electron model in the frame of Fermi sphere-Brillouin zone interaction. A Brillouin-Jones zone formed by a group of strong diffraction reflections close to the Fermi sphere is the reason for the reduction of crystal energy and stabilization of the structure. This zone corresponds well to the four valence electrons in Si and Ge, and leads to assume an spd-hybridization for Bi. To explain the stabilization of this structure within the same model in alkali metals, that are monovalents at ambient conditions, a possibility of an overlap of the core, and valence band electrons at strong compression, is considered. The assumption of the increase in the number of valence electrons helps to understand sequences of complex structures in compressed alkali elements and unusual changes in their physical properties, such as electrical resistance and superconductivity.

References

[1]  McMahon, M.I.; Nelmes, R.J. High-pressure structures and phase transformations in elemental metals. Chem. Soc. Rev. 2006, 35, 943–963, doi:10.1039/b517777b.
[2]  Degtyareva, V.F. Simple metals at high pressures: The Fermi sphere–Brillouin zone interaction model. Phys. Usp. 2006, 49, 369–388.
[3]  Degtyareva, O. Crystal structure of simple metals at high pressures. High Press. Res. 2010, 30, 343–371, doi:10.1080/08957959.2010.508877.
[4]  Schwarz, U.; Takemura, K.; Hanfland, M.; Syassen, K. Crystal structure of cesium-V. Phys. Rev. Lett. 1998, 81, 2711–2714, doi:10.1103/PhysRevLett.81.2711.
[5]  Hanfland, M.; Schwarz, U.; Syassen, K.; Takemura, K. Crystal structure of the high-pressure phase silicon VI. Phys. Rev. Lett. 1999, 82, 1197–1200, doi:10.1103/PhysRevLett.82.1197.
[6]  Schwarz, U.; Jepsen, O.; Syassen, K. Electronic structure and bonding in the Cmca phases of Si and Cs. Solid State Commun. 2000, 113, 643–648, doi:10.1016/S0038-1098(99)00527-X.
[7]  Mott, N.F.; Jones, H. The Theory of the Properties of Metals and Alloys; Oxford University Press: London, UK, 1936.
[8]  Jones, H. The Theory of Brillouin Zones and Electron States in Crystals; North-Holland Publishing Company: Amsterdam, Holland, 1962.
[9]  Hume-Rothery, W.; Coles, B.R. Atomic Theory for Students of Metallurgy; Institute of Metals: London, UK, 1988.
[10]  Ross, M.; McMahan, A.K. Systematics of the s → d and p → d electronic transition at high pressure for the elements I through La. Phys. Rev. B 1982, 26, 4088–4093, doi:10.1103/PhysRevB.26.4088.
[11]  Degtyareva, V.F.; Degtyareva, O. Structure stability in the simple element sodium under pressure. New J. Phys. 2009, 11, 063037:1–1063037:16.
[12]  Pearson, W.B. Crystal Chemistry and Physics of Metals and Alloys; Wiley-Interscience: New York, NY, USA, 1972.
[13]  Kubiak, R.; Wolcyrz, M. Refinement of crystal structures of AuSn4 and PdSn4. J. Less Common Met. 1984, 97, 265–269, doi:10.1016/0022-5088(84)90031-6.
[14]  Kittel, C. Introduction to Solid State Physics; JohnWiley & Sons: New York, NY, USA, 1995.
[15]  Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chaleogenides. Acta Cryst. A 1976, 32, 751–767, doi:10.1107/S0567739476001551.
[16]  Takemura, K.; Schwarz, U.; Syassen, K.; Hanfland, M.; Christensen, N.; Novikov, D.; Loa, I. High-pressure Cmca and hcp phases of germanium. Phys. Rev. B 2000, 62, R10603–R10606, doi:10.1103/PhysRevB.62.R10603.
[17]  Schwarz, U.; Syassen, K.; Grzechnik, A.; Hanfland, M. The crystal structure of rubidium-VI near 50 GPa. Solid State Commun. 1999, 112, 319–322, doi:10.1016/S0038-1098(99)00362-2.
[18]  Lundegaard, L.F.; Marqués, M.; Stinton, G.; Ackland, G.J.; Nelmes, R.J.; McMahon, M.I. Observation of the oP8 crystal structure in potassium at high pressure. Phys. Rev. B 2009, 80, 020101:1–020101:4.
[19]  Chaimayo, W.; Lundegaard, L.F.; Loa, I.; Stinton, G.W.; Lennie, A.R.; McMahon, M.I. High-pressure, high-temperature single-crystal study of Bi-IV. High Press. Res. 2012, 32, 442–449, doi:10.1080/08957959.2012.722214.
[20]  Degtyareva, V.F.; Degtyareva, O.; Allan, D.R. Ordered Si-VI-type crystal structure in BiSn alloy under high pressure. Phys. Rev. B 2003, 67, 212105:1–212105:4.
[21]  Degtyareva, V.F. Crystal structure of a high-pressure phase in Bi-based alloys related to Si-VI. Phys. Rev. B 2000, 62, 9–12, doi:10.1103/PhysRevB.62.9.
[22]  Degtyareva, V.F.; Smirnova, I.S. BRIZ: A vizualization program for Brillouin zone–Fermi sphere configuration. Z. Kristallogr. 2007, 222, 718–721, doi:10.1524/zkri.2007.222.12.718.
[23]  Sato, H.; Toth, R.S. Fermi Surface of Alloys. Phys. Rev. Lett. 1962, 8, 239–241, doi:10.1103/PhysRevLett.8.239.
[24]  Harrison, W.A. Pseudopotentials. In the Theory of Metals; Elsevier: New York, NY, USA, 1966.
[25]  Bundy, F.P. Phase diagram of bismuth to 130,000 kg/cm2, 500°C. Phys. Rev. 1958, 110, 314–318, doi:10.1103/PhysRev.110.314.
[26]  McMahon, M.I.; Degtyareva, O.; Nelmes, R.J. Ba-IV-type incommensurate crystal structure in group-V metals. Phys. Rev. Lett. 2000, 85, 4896–4899, doi:10.1103/PhysRevLett.85.4896.
[27]  Ponyatovskii, E.G.; Degtyareva, V.F. Specific Features of T-C-P diagrams for binary systems of B-elements. High Press. Res. 1989, 1, 163–184, doi:10.1080/08957958908201683.
[28]  Mizutani, U. Introduction to the Electron. Theory of Metals; Cambridge University Press: New York, NY, USA, 2001.
[29]  Mizutani, U. Hume-Rothery Rules for Structurally Complex Alloy Phases. Taylor & Francis US: London, UK, 2010.
[30]  H?ussler, P. Interrelations between atomic and electronic structures–Liquid and amorphous metals as model systems. Phys. Rep. 1992, 222, 65–143, doi:10.1016/0370-1573(92)90018-U.
[31]  Stiehler, M.; Rauchhaupt, J.; Giegengack, U.; H?ussler, P. On modifications of the well-known Hume-Rothery rules: Amorphous alloys as model systems. J. Non-Cryst. Solids 2007, 353, 1886–1891, doi:10.1016/j.jnoncrysol.2007.01.052.
[32]  Berger, R.F.; Walters, P.L.; Stephen Lee, S.; Hoffmann, R. Connecting the Chemical and Physical Viewpoints of What Determines Structure: From 1-D Chains to γ-Brasses. Chem. Rev. 2011, 111, 4522–4545, doi:10.1021/cr1001222.
[33]  Von Schnering, H.G.; Nesper, R. How nature adapts chemical structures to curved surfaces. Angew. Chem. Int. Ed. Engl. 1987, 26, 1059–1080, doi:10.1002/anie.198710593.
[34]  Nesper, R.; Grin, Yu. Periodic Space Partitioners (PSP) and their relations to crystal chemistry. Z. Kristallogr. 2011, 226, 692–710, doi:10.1524/zkri.2011.1429.
[35]  Ma, Y.; Eremets, M.; Oganov, A.R.; Xie, Y.; Trojan, I.; Medvedev, S.; Lyakhov, A.O.; Valle, M.; Prakapenka, V. Transparent dense sodium. Nature 2009, 458, 182–186, doi:10.1038/nature07786.
[36]  Marqués, M.; Ackland, G.J.; Lundegaard, L.F.; Stinton, G.; Nelmes, R.J.; McMahon, M.I. Potassium under pressure: A pseudobinary ionic compound. Phys. Rev. Lett. 2009, 103, 115501:1–115501:4.
[37]  Degtyareva, V.F.; Afonikova, N.S. Simple metal binary phases based on the body centered cubic structure: Electronic origin of distortions and superlattices. J. Phys. Chem. Solids 2013, 74, 18–24, doi:10.1016/j.jpcs.2012.07.011.
[38]  Hirsch, J.E.; Hamlin, J.J. Why non-superconducting metallic elements become superconducting under high pressure. Phys. C Supercond. 2010, 470, S937–S939, doi:10.1016/j.physc.2009.10.093.
[39]  Hirsch, J.E. Materials and mechanisms of hole superconductivity. Phys. C Supercond. 2012, 472, 78–82, doi:10.1016/j.physc.2011.10.006.
[40]  Wittig, J. Pressure-Induced Superconductivity in Cesium and Yttrium. Phys. Rev. Lett. 1970, 24, 812–815, doi:10.1103/PhysRevLett.24.812.
[41]  Erskine, D.; Yu, P.Y.; Chang, K.J.; Cohen, M.L. Superconductivity and Phase Transitions in Compressed Si to 45 GPa. Phys. Rev. Lett. 1986, 57, 2741–2744, doi:10.1103/PhysRevLett.57.2741.
[42]  Degtyareva, V.F. Electronic origin of the incommensurate modulation in the structure of phosphorus IV. J. Phys. Conf. Ser. 2010, 226, 012019:1–012019:5.
[43]  Degtyareva, V.F.; Degtyareva, O. Potassium under pressure: Electronic origin of complex structures. In Presented at the XXVIII International Conference on Interaction of Intense Energy Fluxes with Matter, Elbrus, Kabardino-Balkaria, Russia, 1–6 March 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133