全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Crystals  2013 

Electroless Nickel-Based Catalyst for Diffusion Limited Hydrogen Generation through Hydrolysis of Borohydride

DOI: 10.3390/cryst3030405

Keywords: hydrogen generation, borohydride, nickel, catalyst

Full-Text   Cite this paper   Add to My Lib

Abstract:

Catalysts based on electroless nickel and bi-metallic nickel-molybdenum nanoparticles were synthesized for the hydrolysis of sodium borohydride for hydrogen generation. The catalysts were synthesized by polymer-stabilized Pd nanoparticle-catalyzation and activation of Al 2O 3 substrate and electroless Ni or Ni-Mo plating of the substrate for selected time lengths. Catalytic activity of the synthesized catalysts was tested for the hydrolyzation of alkaline-stabilized NaBH 4 solution for hydrogen generation. The effects of electroless plating time lengths, temperature and NaBH 4 concentration on hydrogen generation rates were analyzed and discussed. Compositional analysis and surface morphology were carried out for nano-metallized Al 2O 3 using Scanning Electron Micrographs (SEM) and Energy Dispersive X-Ray Microanalysis (EDAX). The as-plated polymer-stabilized electroless nickel catalyst plated for 10 min and unstirred in the hydrolysis reaction exhibited appreciable catalytic activity for hydrolysis of NaBH 4. For a zero-order reaction assumption, activation energy of hydrogen generation using the catalyst was estimated at 104.6 kJ/mol. Suggestions are provided for further work needed prior to using the catalyst for portable hydrogen generation from aqueous alkaline-stabilized NaBH 4 solution for fuel cells.

References

[1]  Chamoun, R.; Demirci, U.B.; Zaatar, Y.; Khoury, A.; Miele, P. Co-αAl2O3-Cu as shaped catalyst in NaBH4 hydrolysis. Int. J. Hydrog. Energy 2010, 35, 6583–6591, doi:10.1016/j.ijhydene.2010.04.107.
[2]  In accordance with the USDOE definitions, the term “gravimetric hydrogen storage capacity” (GHSC) is used for storage system taken as a whole (i.e., including all components such as the hydride, tank, valves and so on). Hence, we use the term “hydrogen density” (HD) as the theoretical storage capacity of the hydride (wt %).
[3]  Chandra, M.; Xu, Q. A high-performance hydrogen generation system: Transition metal-catalyzed dissociation and hydrolysis of ammonia-borane. J. Power Sources 2006, 156, 190–194, doi:10.1016/j.jpowsour.2005.05.043.
[4]  Jiang, H.L.; Xu, Q. Catalytic hydrolysis of ammonia borane for chemical hydrogen storage. Catal. Today 2011, 170, 56–63, doi:10.1016/j.cattod.2010.09.019.
[5]  Yadav, M.; Xu, Q. Liquid-phase chemical hydrogen storage materials. Energy Environ. Sci. 2012, 5, 9698–9725, doi:10.1039/c2ee22937d.
[6]  Lu, Z.-H. Recent Progress in Boron- and Nitrogen-Based Chemical Hydrogen Storage. Funct. Mater. Lett. 2012, 5, 1230001:1–1230001:9.
[7]  Kim, D.R.; Cho, K.W.; Choi, Y.I.; Park, C.J. Fabrication of porous Co-Ni-P catalysts by electrodeposition and their catalytic characteristics for the generation of hydrogen for an alkaline NaBH4 solution. Int. J. Hydrog. Energy 2009, 34, 2622–2623, doi:10.1016/j.ijhydene.2008.12.097.
[8]  Eom, K.S.; Kwon, H.S. Effects of deposition time on the H2 generation kinetics of electroless-deposited cobalt-phosphorous catalyst from NaBH4 hydrolysis, and its cyclic durability. Int. J. Hydrog. Energy 2010, 35, 5220–5221, doi:10.1016/j.ijhydene.2010.03.005.
[9]  Peng, B.; Chen, D. Ammonia borane as an efficient and lightweight hydrogen medium. Energy Environ. Sci. 2008, 1, 479–483.
[10]  Umegaki, T.; Yan, J.M.; Zhang, X.B.; Shioyama, H.; Kuriyama, N.; Xu, Q. Boron- and nitrogen-based chemical hydrogen storage materials. Int. J. Hydrog. Energy 2008, 34, 2303–2311.
[11]  Demirci, U.B.; Miele, P. Sodium borohydride versus ammonia borane, in hydrogen storage and direct fuel cell applications. Energy Environ. Sci. 2009, 2, 627–637, doi:10.1039/b900595a.
[12]  Sahin, ?.; Dolas, H.; Kaya, M.; Izgi, M.S.; Demir, H. Hydrogen production from sodium borohydride for fuel cells in presence of electrical field. Int. J. Energy Res. 2010, 34, 557–558.
[13]  Liu, B.H.; Li, Z.P.; Morigasaki, N.; Suda, S. Kinetic characteristics of sodium borohydride formation when sodium meta-borate reacts with magnesium and hydrogen. Int. J. Hydrog. Energy 2008, 33, 1323–1328, doi:10.1016/j.ijhydene.2007.12.033.
[14]  Kim, T. Hydrogen generation from sodium borohydride using microreactor for micro fuel cells. Int. J. Hydrog. Energy 2011, 36, 1404–1405, doi:10.1016/j.ijhydene.2010.10.079.
[15]  Zhang, J.S.; Delgass, W.N.; Fisher, T.S.; Gore, J.P. Kinetics of Ru catalyzed sodium borohydride hydrolysis. J. Power Sources 2007, 164, 772–781, doi:10.1016/j.jpowsour.2006.11.002.
[16]  Kojima, Y.; Suzuki, K.; Fukumoto, K.; Kawai, Y.; Kimbara, M.; Nakanishi, H. Development of 10 kW-scale hydrogen generator using chemical hydride. J. Power Sources 2004, 125, 22–26, doi:10.1016/S0378-7753(03)00827-9.
[17]  Patel, N.; Patton, B.; Zanchetta, C.; Fernandes, R.; Guella, G.; Kale, A.; Miotello, A. Pd-C powder and thin film catalysts for hydrogen production by hydrolysis of sodium borohydride. Int. J. Hydrog. Energy 2008, 33, 287–292, doi:10.1016/j.ijhydene.2007.07.018.
[18]  Amendola, S.C.; Onnerud, P.; Kelly, M.T.; Petillo, P.J.; Sharp-Goldman, S.L.; Binder, M. An ultrasafe hydrogen generator: Aqueous, alkaline borohydride solutions and Ru catalyst. J. Power Sources 2000, 85, 186–189.
[19]  Amendola, S.C.; Sharp-Goldman, S.L.; Janjua, M.S.; Spencer, N.C.; Kelly, M.T.; Petillo, P.J. Safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst. Int. J. Hydrog. Energy 2000, 25, 969–975, doi:10.1016/S0360-3199(00)00021-5.
[20]  Andrieux, J.; Demirci, U.B.; Miele, P. Langmuir-Hinshelwood kinetic model to capture the cobalt nanoparticles-catalyzed hydrolysis of sodium borohydride over a wide temperature range. Catal. Today 2011, 170, 13–19, doi:10.1016/j.cattod.2011.01.019.
[21]  Rakap, M.; Kalu, E.E.; ?zkar, S. Hydrogen generation from the hydrolysis of ammonia borane using cobalt-nickel-phosphorous (Co-Ni-P) catalyst supported on Pd-activated TiO2 by electroless deposition. Int. J. Hydrog. Energy 2011, 36, 254–261, doi:10.1016/j.ijhydene.2010.09.027.
[22]  Wu, C.; Bai, Y.; Liu, D.X.; Wu, F.; Pang, M.L.; Yi, B.L. Ni-Co-B catalyst-promoted hydrogen generation by hydrolysis NaBH4 solution for in situ hydrogen supply of portable fuel cells. Catal. Today 2011, 170, 33–39, doi:10.1016/j.cattod.2011.01.046.
[23]  Oh, T.H.; Kwon, S. Effect of manufacturing conditions on properties of electroless deposited Co-P/Ni foam catalyst for hydrolysis of sodium borohydride solution. Int. J. Hydrog. Energy 2012, 37, 15925–15937, doi:10.1016/j.ijhydene.2012.08.053.
[24]  Oh, T.H.; Kwon, S. Effect of bath composition on properties of electroless Co-P/Ni foam catalyst for hydrolysis of sodium borohydride solution. Int. J. Hydrog. Energy 2012, 37, 17027–17039, doi:10.1016/j.ijhydene.2012.08.083.
[25]  Liu, C.H.; Chen, B.H.; Hsueh, C.L.; Ku, J.R.; Jeng, M.S.; Tsau, F. Hydrogen generation from hydrolysis of sodium borohydride using Ni-Ru nanocomposite as catalyst. Int. J. Hydrog. Energy 2009, 34, 2153–2163, doi:10.1016/j.ijhydene.2008.12.059.
[26]  Ingersoll, J.C.; Mani, N.; Thenmozhiyal, J.C.; Muthaiah, A. Catalytic hydrolysis of sodium borohydride by a novel nickel-cobalt-boride catalyst. J. Power Sources 2007, 173, 450–457, doi:10.1016/j.jpowsour.2007.04.040.
[27]  Rakap, M; Kalu, E.E.; ?zkar, S. Cobalt-nickel-phosphorus supported on Pd-activated TiO2 (Co-Ni-P/Pd-TiO2) as cost-effective and reusable catalyst for hydrogen generation from hydrolysis of alkaline sodium borohydride solution. J. Alloys Compd. 2011, 509, 7016–7021, doi:10.1016/j.jallcom.2011.04.023.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133