A comparison study on the reliability of gold (Au) and copper (Cu) wire bonding is conducted to determine their corrosion and oxidation behavior in different environmental conditions. The corrosion and oxidation behaviors of Au and Cu wire bonding are determined through soaking in sodium chloride (NaCl) solution and high temperature storage (HTS) at 175 °C, 200 °C and 225 °C. Galvanic corrosion is more intense in Cu wire bonding as compared to Au wire bonding in NaCl solution due to the minimal formation of intermetallics in the former. At all three HTS annealing temperatures, the rate of Cu-Al intermetallic formation is found to be three to five times slower than Au-Al intermetallics. The faster intermetallic growth rate and lower activation energy found in this work for both Au/Al and Cu/Al as compared to literature could be due to the thicker Al pad metallization which removed the rate-determining step in previous studies due to deficit in Al material.
References
[1]
Harmon, G. Wire Bonding in Microelectronics: Materials, Processes, Reliability and Yield, 2nd ed. ed.; McGraw-Hill: New York, NY, USA, 1997.
[2]
England, L.; Jiang, T. Reliability of Cu Wire Bonding to Al Metallization. In Proceedings of IEEE Electronic Component Technology Conference, Reno, NV, USA, 29 May 2007; p. 1604.
[3]
Kim, H.J.; Lee, J.Y.; Paik, K.W.; Koh, K.W.; Won, J.H.; Choe, S.; Lee, J.; Moon, J.T.; Park, Y.J. Effects of Cu/Al intermetallic compound (IMC) on copper wire and aluninum pad bondability. IEEE Trans. Compon. Packag. Technol. 2003, 26, 367–374, doi:10.1109/TCAPT.2003.815121.
[4]
Kurtz, J.; Cousens, D.; Dufour, M. Copper wire ball bonding. In Proceedings of the 34th Electron Component Conference, New Orleans, LA, USA, 14–16 May 1984; pp. 1–5.
[5]
Mori, S.; Yoshida, H.; Uchiyama, N. The development of new copper ball bonding wire. In Proceedings of the 38th Elentron Component Conference, Los Angeles, CA, USA, 9–11 May 1988; pp. 539–545.
[6]
Na, S.H.; Hwang, T.Y.; Park, J.S.; Kim, J.Y.; Yoo, H.Y.; Lee, C.H. Characterization of intermetallic compound (IMC) growth in Cu wire ball bonding on Al pad metallization. In Proceedings of the 61st Electronic Components and Technology Conference, Lake Buena Vista, FL, USA, 31 May–3 June 2011; pp. 1740–1745.
Nguyen, L.T.; McDonald, D.; Danker, A.R.; Ng, P. Optimization of copper wire bonding on Al-Cu metallization. IEEE Trans. Compon. Packag. Manufact. Technol. Part A. 1995, 18, 423–429, doi:10.1109/95.390327.
[9]
Tan, C.W.; Daud, A.R.; Yarmo, M.A. Corrosion study at the Cu-Al interface in microelectronics packaging. Appl. Surf. Sci. 2002, 191, 67–73, doi:10.1016/S0169-4332(02)00150-2.
[10]
Hang, C.J.; Wang, C.Q.; Mayer, M.; Tian, Y.H.; Zhou, Y.; Wang, H.H. Growth behaviour of Cu/Al intermetallic compounds and cracks in copper ball bonds during isothermal aging. Microelectron. Reliab. 2008, 48, 416–424, doi:10.1016/j.microrel.2007.06.008.
[11]
Lee, C.C.; Higgins, L.M. Challenges of Cu wire bonding on low-k/Cu wafers with BOA structures. In Proceedings of the 60th Electronic Components and Technology Conference, Las Vega, NV, USA, 1–4 June 2010; pp. 342–349.
[12]
Boettcher, T.; Rother, M.; Liedtke, S.; Ulrich, M.; Bollmann, M.; Pinkernelle, A.; Gruber, D.; Funke, H.-J.; Kaiser, M.; Lee, K.; et al. On the intermetallic corrosion of Cu-Al wire bonds. In Proceedings of the 12th Electronics Packaging Technology Conference, Singapore, 8–10 December 2010; pp. 585–590.
[13]
Facility for the Analysis of Chemical Thermodynamics. Available online: http://www.crct.polymtl.ca/factweb.php (accessed on 18 March 2013).
[14]
Foley, R.T.; Hguyen, I.H. The chemical nature of Al corrosion—V. Energy transfer in Al dissolution. J. Electrochem. Soc. 1982, 192, 464–467, doi:10.1149/1.2123881.
[15]
Beverskog, B.; Puigdomenech, I. SKI Rapport 98:19. Pourbaix diagrams for the system copper-chlorine at 5–100 °C. Available online: http://www.stralsakerhetsmyndigheten.se/global/ publikationer/ski_import/010803/04318226039/98-19.pdf (accessed on 18 March 2013).
[16]
Lue, M.H.; Huang, C.T.; Huang, S.T.; Hsieh, K.C. Bromine and chlorine induced degradation of the Au–Al bonds. J. Electron. Mater. 2004, 33, 1111–1117, doi:10.1007/s11664-004-0112-z.
[17]
Schrapler, L.; Muller, T.; Knoll, H.; Petzold, M. Influence of intermetallic phases on bonding reliability in thermosonic Au–Al wire bonding. In Proceedings of the 1st Electronic System Integration Technology Conference, Dresden, Germany, 5–7 September 2006; pp. 1266–1273.
[18]
Rajan, K.; Wallach, E.R. A transmission electron microscopy study of intermetallic formation in Al-Cu thin film couples. J. Cryst. Growth 1980, 49, 297–302, doi:10.1016/0022-0248(80)90164-5.
[19]
Tamou, Y.; Li, J.; Russell, S.W.; Mayer, J.W. Thermal and ion beam induced thin film reactions in Cu-Al bilayers. Nucl. Instrum. Methods Phys. Res. B 1992, 64, 130–133, doi:10.1016/0168-583X(92)95451-V.