In our studies, it was confirmed that the cause of image sticking on liquid crystal (LC) cells is based on attacks of electrostatic discharge (ESD), which can be greatly relieved by doping with a small amount of tin-doped indium oxide (ITO) nanoparticles. Our proposed remedy allows the residual time of image sticking to be significantly reduced by more than an order and may protect the LC displays against any adverse ESD conditions, thus enhancing the overall display quality and reliability. In this study, conventional voltage-transmittance (V-T) characterization, voltage holding ratio (VHR) measurement, and ESD testing were employed to investigate the properties of the ITO-doped LCs. Based on our low voltage measurement results, it is interesting to find that ITO nanoparticles do not evidently alter the intrinsic properties of the LC. Namely, ITO additive initiates an early breakdown of the doped LC samples exposed to high electric fields. A model is proposed in this paper to depict the possible role of ITO particles applied in LCs.
References
[1]
Thisayukta, J.; Shiraki, H.; Sakai, Y.; Masumi, T.; Kundu, S.; Shiraishi, Y.; Toshima, N.; Kobayashi, S. Dielectric Properties of Frequency Modulation Twisted Nematic LCDs Doped with Silver Nanoparticles. Jpn. J. Appl. Phys. 2004, 43, 5430–5434, doi:10.1143/JJAP.43.5430.
[2]
Yoshikawa, S.; Maeda, K.; Shiraishi, Y.; Xu, J.; Shiraki, H.; Toshima, N.; Kobayashi, S. Frequency Modulation Response of a Tunable Birefringent Mode Nematic Liquid Crystal Electrooptic Device Fabricated by Doping Nanoparticles of Pd Covered with Liquid-Crystal Molecules. Jpn. J. Appl. Phys. 2002, 41, L1315–L1317, doi:10.1143/JJAP.41.1315.
Jeong, S.-J.; Suresh, K.; Jeong, K.-U.; Srivastava, A.K.; Lee, S.-H.; Jeong, S.-H.; Lee, Y.-H.; Lu, R.; Wu, S.-T. Unusual double four-lobe textures generated by the motion of carbon nanotubes in a nematic liquid crystal. Opt. Express 2007, 15, 11698–11705, doi:10.1364/OE.15.011698.
[5]
Ouskova, E.; Buchnev, O.; Reshetnyak, V.; Reznikov, Y.; Kresse, H. Dielectric relaxation spectroscopy of a nematic liquid crystal doped with ferroelectric Sn2P2S6 nanoparticles. Liq. Cryst. 2003, 30, 1235–1239, doi:10.1080/02678290310001601996.
[6]
Tseng, J.-C.; Hwu, J.-G. Effects of electrostatic discharge high-field current impulse on oxide breakdown. J. Appl. Phys. 2007, 101, 014103:1–014103:6.
[7]
Golo, N.T.; van der Wal, S.; Kuper, F.G.; Mouthaan, T. Estimation of the impact of electrostatic discharge on density of states in hydrogenated amorphous silicon thin-film transistors. Appl. Phys. Lett. 2002, 80, 3337–3339, doi:10.1063/1.1476394.
[8]
Jiang, B.-R.; Liu, C.-Y.; Chen, C.-J.; Tseng, K.-S.; Chang, L.-H. Liquid Crystal Display and ESD Protection Circuit Thereof. U.S. Patent 7,375,724, 20 May 2008.
[9]
Kusanagi, T. Liquid Crystal Display Having Electrostatic Discharge Damage Prevention. U.S. Patent 6,108,057, 22 August 2000.
[10]
Sonoda, H.; Ohe, M.; Asuma, H.; Matsuyama, S. Liquid Crystal Display Device Having a Spacer. U.S. Patent 6,433,852, 13 August 2002.
[11]
Lee, W.; Wang, C.-Y.; Shih, Y.-C. Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host. Appl. Phys. Lett. 2004, 85, 513–515.
[12]
Baik, I.-S.; Jeon, S.Y.; Lee, S.H.; Park, K.A.; Jeong, S.H.; An, K.H.; Lee, Y.H. Electrical-field effect on carbon nanotubes in a twisted nematic liquid crystal cell. Appl. Phys. Lett. 2005, 87, 263110:1–263110:3.
[13]
Shah, H.J.; Fontecchio, A.K.; Mattia, D.; Gogotsi, Y. Field controlled nematic-to-isotropic phase transition in liquid crystal-carbon nanotube composties. J. Appl. Phys. 2008, 103, 064314:1–064314:5.
[14]
Chen, P.-S.; Huang, C.-C.; Liu, Y.-W.; Chao, C.-Y. Effect of insulating-nanoparticles addition on ion current and voltage-holding ratio in nematic liquid crystal cells. Appl. Phys. Lett. 2007, 90, 211111:1–211111:3.
Buchnev, O.; Dyadyusha, A.; Kaczmarek, M.; Reshetnyak, V.; Reznikov, Y. Enhanced two-beam coupling in colloids of ferroelectric nanoparticles in liquid crystals. J. Opt. Soc. Am. 2007, 24, 1512–1516, doi:10.1364/JOSAB.24.001512.
[19]
Liang, B.-J.; Liu, D.-G.; Shie, W.-Y.; Huang, S.-R. Effects of Nanoscaled Tin-Doped Indium Oxide on the Image Sticking Property of Liquid Crystal Cells. Jpn. J. Appl. Phys. 2010, 49, 025004:1–025004:6.
[20]
Liang, B.-J.; Liu, D.-G.; Chang, C.-Y.; Shie, W.-Y. Effects of Concentration of Nanoscale Tin-Doped Indium Oxide on Electrical Breakdown of High-Resistance Liquid Crystal. Jpn. J. Appl. Phys. 2011, 50, 055002:1–055002:5.
[21]
Gurev, H.S.; Bicking, K. Indium tin oxide (ITO) coating of curved polymer substrates. J. Proc. SPIE 1994, 2262, 246–255, doi:10.1117/12.185796.
[22]
Josell, D.; Brongersma, S.H.; T?kei, Z. Size-Dependent Resistivity in Nanoscale Interconnects. Annu. Rev. Mater. Res. 2009, 39, 231–254, doi:10.1146/annurev-matsci-082908-145415.
[23]
Chen, W.-Y.; Ker, M.-D.; Huang, Y.-J. Investigation on the Validity of Holding Voltage in High-Voltage Devices Measured by Transmission-Line-Pulsing (TLP). IEEE Electron. Dev. Lett. 2008, 29, 762–764, doi:10.1109/LED.2008.2000910.
[24]
Kok, J.A.; Corbey, M.M.G. Dipoles and electric breakdown. Appl. Sci. Res. Sect. 1957, 6, 449–455.
[25]
Tortai, J.H.; Bonifaci, N.; Denat, A. Insulating properties of some liquids after an electrical arc. IEEE Trans. Dielectr. Electr. Insul. 2002, 9, 3–9, doi:10.1109/94.983877.
[26]
Kuffel, E.; Abdullah, M. High Voltage Engineering; Pergamon Press Ltd.: New York, NY, USA, 1970.