A Wireless Sensor Network (WSN) is a collection of low-cost, low-power and large-scale wireless sensor nodes. Routing protocols are an important topic in WSN. Every sensor node should use a proper mechanism to transmit the generated packets to its destination, usually a base station. In previous works, routing protocols use the global information of the network that causes the redundant packets to be increased. Moreover, it leads to an increase in the network traffic, to a decrease in the delivery ratio of data packets, and to a reduction in network life. In this paper, we propose a new inferential routing protocol called SFRRP ( Static Three-Dimensional Fuzzy Routing based on the Receiving Probability). The proposed protocol solves the above mentioned problems considerably. The data packets are transmitted by hop-to-hop delivery to the base station. It uses a fuzzy procedure to transmit the sensed data or the buffered data packets to one of the neighbors called selected node. In the proposed fuzzy system, the distance and number of neighbors are input variables, while the receiving probability is the output variable. SFRRP just uses the local neighborhood information to forward the packets and is not needed by any redundant packet for route discovery. The proposed protocol has some advantages such as a high delivery ratio, less delay time, high network life, and less network traffic. The performance of the proposed protocol surpasses the performance of the Flooding routing protocol in terms of delivery ratio, delay time and network lifetime.
Fortino, G.; Guerrieri, A.; O'Hare, G.; Ruzzelli, A. A flexible building management framework based on wireless sensor and actuator networks. J. Netw. Comput. Appl. 2012, 35, 1934–1952, doi:10.1016/j.jnca.2012.07.016.
[4]
Shokrzadeh, H.; Khorsandi, S.; Toroghi Haghighat, A. Optimized query-driven appointment routing based on Expectation-Maximization in wireless sensor networks. J. Netw. Comput. Appl. 2012, 35, 1749–1761, doi:10.1016/j.jnca.2012.06.007.
[5]
Huang, H.; Hartman, J.H.; Hurst, T.N. , Sensor and Ad Hoc Communications and Networks, 2006. SECON'06. 2006 3rd Annual IEEE Communications Society on, Hyatt Regency, Reston, VA, USA, September 2006; IEEE: Hyatt Regency, Reston, VA, USA, 2006; pp. 1–9.
[6]
Othman, M.F.; Shazali, K. Wireless Sensor Network Applications: A Study in Environment Monitoring System. Procedia Eng. 2012, 41, 1204–1210, doi:10.1016/j.proeng.2012.07.302.
[7]
Ali, K.A.; Mouftah, H.T. Wireless personal area networks architecture and protocols for multimedia applications. Ad Hoc Netw. 2011, 9, 675–686, doi:10.1016/j.adhoc.2010.09.006.
[8]
Boukerche, A.; Turgut, B.; Aydin, N.; Ahmad, M.Z.; B?l?ni, L.; Turgut, D. Routing protocols in ad hoc networks: A survey. Comput. Netw. 2011, 55, 3032–3080, doi:10.1016/j.comnet.2011.05.010.
[9]
Mu?oz, J.L.; Esparza, O.; Aguilar, M.; Carrascal, V.; Forné, J. Rdsr-v. reliable dynamic source routing for video-streaming over mobile ad hoc networks. Comput. Netw. 2010, 54, 79–96, doi:10.1016/j.comnet.2009.08.015.
[10]
Sergiou, C.; Vassiliou, V.; Paphitis, A. Hierarchical Tree Alternative Path (HTAP) algorithm for congestion control in wireless sensor networks. Ad Hoc Netw. 2013, 11, 257–272, doi:10.1016/j.adhoc.2012.05.010.
[11]
Can, Z.; Demirbas, M. A survey on in-network querying and tracking services for wireless sensor networks. Ad Hoc Netw. 2013, 11, 596–610, doi:10.1016/j.adhoc.2012.08.007.
[12]
Nayebi, A.; Karlsson, G.; Sarbazi-Azad, H. Evaluation and design of beaconing in mobile wireless networks. Ad Hoc Netw. 2011, 9, 368–386, doi:10.1016/j.adhoc.2010.08.014.
[13]
Chang, D.; Cho, K.; Choi, N.; Kwon, T.; Choi, Y. A probabilistic and opportunistic flooding algorithm in wireless sensor networks. Comput. Commun. 2012, 35, 500–506, doi:10.1016/j.comcom.2011.11.016.
[14]
Heinzelman, W.R.; Kulik, J.; Balakrishnan, H. Adaptive protocols for information dissemination in wireless sensor networks, Proceedings of the 5th annual ACM/IEEE international conference on Mobile computing and networking, Seattle, WA, USA, August 1999; pp. 174–185.
[15]
Kulik, J.; Heinzelman, W.; Balakrishnan, H. Negotiation-based protocols for disseminating information in wireless sensor networks. Wirel. Netw. 2002, 8, 169–185, doi:10.1023/A:1013715909417.
[16]
El-Basioni, B.M.M.; El-kader, S.M.A.; Eissa, H.S. Designing a local path repair algorithm for directed diffusion protocol. Egypt. Inform. J. 2012, 13, 155–169, doi:10.1016/j.eij.2012.07.001.
[17]
Liu, A.; Ren, J.; Li, X.; Chen, Z.; Shen, X.S. Design principles and improvement of cost function based energy aware routing algorithms for wireless sensor networks. Comput. Netw. 2012, 56, 1951–1967, doi:10.1016/j.comnet.2012.01.023.
[18]
Geetha, V.; Kallapur, P.; Tellajeera, S. Clustering in Wireless Sensor Networks: Performance Comparison of LEACH & LEACH-C Protocols Using NS2. Procedia Technol. 2012, 4, 163–170.
[19]
Manjeshwar, A.; Agrawal, D.P. TEEN: a routing protocol for enhanced efficiency in wireless sensor networks, Proceedings of the 15th International Parallel & Distributed Processing Symposium, Washington, DC, USA, 2001; pp. 2009–2015.
[20]
Manjeshwar, A.; Agrawal, D.P. APTEEN: A hybrid protocol for efficient routing and comprehensive information retrieval in wireless sensor networks, Proceedings of the 16th International Parallel and Distributed Processing Symposium, Ft. Lauderdale, FL, USA, April 2001.
[21]
Rodoplu, V.; Meng, T.H. Minimum energy mobile wireless networks. IEEE J. Sel. Area. Comm. 1999, 17, 1333–1344, doi:10.1109/49.779917.
[22]
Zhang, J.; Lee, H.-N. Energy-efficient utility maximization for wireless networks with/without multipath routing. AEU Int. J. Electron. C 2010, 64, 99–111, doi:10.1016/j.aeue.2008.12.001.
[23]
Li, L.; Halpern, J.Y. Minimum-energy mobile wireless networks revisited, Communications, 2001. ICC 2001. IEEE International Conference on, Helsinki, Finland, June 2001; IEEE: Helsinki, Finland, 2001; pp. 278–283.
[24]
Subramanian, L.; Katz, R.H. An architecture for building self-configurable systems, Mobile and Ad Hoc Networking and Computing, 2000. MobiHOC. 2000 First Annual Workshop on, Boston Massachusetts, USA, August 2000; IEEE, 2000; pp. 63–73.
[25]
Talebi, M.S.; Khonsari, A.; Mohtasham, A.; Abbasi, A. Cost-aware monitoring of network-wide aggregates in wireless sensor networks. Comput. Netw. 2011, 55, 1276–1290, doi:10.1016/j.comnet.2010.11.012.
[26]
Li, Q.; Aslam, J.; Rus, D. Hierarchical power-aware routing in sensor networks, Proceedings of the DIMACS workshop on pervasive networking, 2001; Citeseer, 2001.
[27]
Xu, Y.; Heidemann, J.; Estrin, D. Geography-informed energy conservation for ad hoc routing, Geography-informed energy conservation for ad hoc routing, Proceedings of the 7th annual international, New York, NY, USA, 2001; ACM, 2001; pp. 70–84.
[28]
Yu, Y.; Govindan, R.; Estrin, D. Geographical and energy aware routing: A recursive data dissemination protocol for wireless sensor networks; Citeseer, 2001.
[29]
Chen, B.; Jamieson, K.; Balakrishnan, H.; Morris, R. Span: An energy-efficient coordination algorithm for topology maintenance in ad hoc wireless networks, Proceedings of the 7th annual international conference on Mobile computing and networking, Hingham, MA, USA, September 2002; ACM, 2002; pp. 481–494.
[30]
Kuhn, F.; Wattenhofer, R.; Zollinger, A. Worst-case optimal and average-case efficient geometric ad-hoc routing, Proceedings of the 4th ACM international symposium on Mobile ad hoc networking & computing, New York, NY, USA, 2003; ACM, 2003; pp. 267–278.
[31]
Zhang, X.; Wu, Z.D. The balance of routing energy consumption in wireless sensor networks. J. Parallel Distr. Comput. 2011, 71, 1024–1033, doi:10.1016/j.jpdc.2011.03.003.
[32]
Bassi, G.; Galarza, C.G. High throughput and low power consumption on a wireless sensor network. Digit. Singal Process. 2012, 22, 263–268, doi:10.1016/j.dsp.2011.10.003.
[33]
Abadeh, M.S.; Habibi, J.; Lucas, C. Intrusion detection using a fuzzy genetics-based learning algorithm. J. Netw. Comput. Appl. 2007, 30, 414–428, doi:10.1016/j.jnca.2005.05.002.
[34]
Kong, X.; Lin, C.; Jiang, Y.; Yan, W.; Chu, X. Efficient dynamic task scheduling in virtualized data centers with fuzzy prediction. J. Netw. Comput. Appl. 2011, 34, 1068–1077, doi:10.1016/j.jnca.2010.06.001.
[35]
Abbas Khan, S.; Daachi, B.; Djouani, K. Application of fuzzy inference systems to detection of faults in wireless sensor networks. Neurocomputing 2012, 94, 111–120, doi:10.1016/j.neucom.2012.04.002.
[36]
Kruglov, V.M. A characterization of the Poisson distribution. Stat. Probabil. Lett. 2010, 80, 2032–2034, doi:10.1016/j.spl.2010.09.010.
[37]
Acilar, A.M.; Arslan, A. Optimization of multiple input–output fuzzy membership functions using clonal selection algorithm. Expert Syst. Appl. 2011, 38, 1374–1381, doi:10.1016/j.eswa.2010.07.036.
[38]
Gostev, V.; Skurtov, S.; Nevolko, V. Designing of an fuzzy controller at identical triangular membership functions, Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET), 2010 International Conference on, Slavs'ke, Lviv Oblast, Ukraine, February 2010; IEEE, 2010; pp. 289–289.
[39]
Wong, M.L.; Yam, Y.; Baranyi, P. Representing membership functions as elements in function space, American Control Conference, Arlington, VA, USA, June 2001. Proceedings of the 2001; IEEE, 2001; pp. 1922–1927.
[40]
Runkler, T.A. Selection of appropriate defuzzification methods using application specific properties. IEEE Trans. Fuzzy Syst. 1997, 5, 72–79, doi:10.1109/91.554449.