全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Coatings  2013 

Ethylene Methacrylic Acid (EMAA) Single Splat Morphology

DOI: 10.3390/coatings3020082

Keywords: EMAA, splats, wettability, roughness, morphology, thermal spray

Full-Text   Cite this paper   Add to My Lib

Abstract:

A single splat is the building block of a thermal spray coating; thus, investigating single splats is essential to understanding thermal spray coatings and their properties. In this study, the morphology of flame sprayed ethylene methacrylic acid (EMAA) splats, deposited at various stand-off distances (SODs) onto glass and mild steel substrates were investigated using a scanning electron microscope, Leica M Stereo-microscope, the WYKO surface profiler and the ContourGT surface profiler. This work analyzed the effect of the process variables on EMAA splat morphology. The modeling of the temperature versus velocity (TV) map, the temperature versus stand-off distance (TS) map and the velocity versus stand-off distance (VS) map of EMAA single splat were presented.

References

[1]  Fauchais, P.; Fukumoto, M.; Vardelle, A.; Vardelle, M. Knowledge concerning splat formation: An invited review. J. Therm. Spray Technol. 2004, 13, 337–360, doi:10.1361/10599630419670.
[2]  Verdian, M.M.; Salehi, M.; Raeissi, K. Effect of feedstock particle size on microstructure of aps coatings prepared from mechanically alloyed nickel-titanium powders. Surf. Eng. 2010, 26, 447–452, doi:10.1179/026708409X12490360425927.
[3]  Sweet, G.K. Applying Thermoplastic/Thermoset Powder with a Modified Plasma System. In Thermal Spray Coatings: Research, Design and Applications; Berndt, C.C., Bernecki, T.F., Eds.; ASM International: Anaheim, CA, USA, 1993; pp. 381–384.
[4]  Vardelle, A.; Moreau, C.; Fauchais, P. The dynamics of deposit formation in thermal-spray processes. MRS Bull. 2000, 25, 32–37, doi:10.1557/mrs2000.121.
[5]  Bussmann, M.; Chandra, S.; Mostaghimi, J. Modeling the splash of a droplet impacting a solid surface. Phys. Fluids 2000, 12, 3121–3132.
[6]  Herman, H.; Sampath, S.; McCune, R. Thermal spray: Current status and future trends. MRS Bull. 2000, 25, 17–25, doi:10.1557/mrs2000.119.
[7]  Jiang, X.; Wan, Y.; Herman, H.; Sampath, S. Role of condensates and adsorbates on substrate surface on fragmentation of impinging molten droplets during thermal spray. Thin Solid Films 2001, 385, 132–141, doi:10.1016/S0040-6090(01)00769-6.
[8]  Tran, A.T.T.; Hyland, M.M.; Qiu, T.; Withy, B.; James, B.J. Effects of surface chemistry on splat formation during plasma spraying. J. Therm. Spray Technol. 2008, 17, 637–645, doi:10.1007/s11666-008-9237-6.
[9]  Tran, A.T.T.; Hyland, M.M.; Shinoda, K.; Sampath, S. Influence of substrate surface conditions on the deposition and spreading of molten droplets. Thin Solid Films 2011, 519, 2445–2456, doi:10.1016/j.tsf.2010.11.047.
[10]  Fukumoto, M.; Nagai, H.; Yasui, T. Influence of surface character change of substrate due to heating on flattening behavior of thermal sprayed particles. J. Therm. Spray Technol. 2006, 15, 759–764, doi:10.1361/105996306X146776.
[11]  Zhao, B.; Yadian, B.L.; Li, Z.J.; Liu, P.; Zhang, Y.F. Improvement on wettability between carbon nanotubes and sn. Surf. Eng. 2009, 25, 31–35, doi:10.1179/026708408X334104.
[12]  Fukumoto, M.; Nishioka, E.; Matsubara, T. Effect of interface wetting on flattening of freely fallen metal droplet onto flat substrate surface. J. Therm. Spray Technol. 2002, 11, 69–74, doi:10.1361/105996302770348998.
[13]  Tanaka, Y.; Fukumoto, M. Investigation of dominating factors on flattening behavior of plasma sprayed ceramic particles. Surf. Coat. Technol. 1999, 120–121, 124–130, doi:10.1016/S0257-8972(99)00348-5.
[14]  Christoulis, D.K.; Pantelis, D.I.; Borit, F.; Guipont, V.; Jeandin, M. Effect of Substrate Roughness and Temperature on Splat Formation in Plasma Sprayed Aluminium Bronze. In The 18th International Conference on Surface Modification Technologies, Dijon, France, 2004; pp. 73–83.
[15]  Tran, A.T.T.; Hyland, M.M. The Role of Substrate Surface Chemistry on Splat Formation during Plasma Spray Deposition by Experiments and Simulations. In International Thermal Spray Conference; Marple, B.R., Hyland, M.M., Lau, Y.-C., Li, C.-J., Lima, R.S., Montavon, G., Eds.; ASM International: Las Vegas, NV, USA, 2009; pp. 462–468.
[16]  Li, R.; Ashgriz, N.; Chandra, S. Maximum spread of droplet on solid surface: Low reynolds and weber numbers. J. Fluids Eng. Trans. Asme 2010, 132, 061302.1–061302.5, doi:10.1115/1.4001695.
[17]  Fukumoto, M.; Huang, Y. Flattening mechanism in thermal sprayed nickel particle impinging on flat substrate surface. J. Therm. Spray Technol. 1999, 8, 427–432, doi:10.1361/105996399770350386.
[18]  Fauchais, P.; Vardelle, A.; Dussoubs, B. Quo vadis thermal spraying? J. Therm. Spray Technol. 2001, 10, 44–66, doi:10.1361/105996301770349510.
[19]  Fukumoto, M.; Yamaguchi, T.; Yamada, M.; Yasui, T. Splash Splat to Disk Splat Transition Behavior in Plasma-sprayed Metallic Materials. In International Thermal Spray Conference on Thermal Spray 2007: Global Coating Solutions; Marple, B.R., Hyland, M.M., Lau, Y.-C., Li, C.-J., Lima, R.S., Montavon, G., Eds.; ASM International: Beijing, China, 2007; pp. 905–912.
[20]  Fauchais, P.; Vardelle, M.; Vardelle, A.; Bianchi, L.; Leger, A.C. Parameters controlling the generation and properties of plasma sprayed zirconia coatings. Plasma Chem. Plasma Process. 1996, 16, S99–S125, doi:10.1007/BF01465219.
[21]  Bianchi, L.; Grimaud, A.; Blein, F.; Lucchese, P.; Fauchais, P. Comparison of plasma-sprayed alumina coatings by rf and dc plasma spraying. J. Therm. Spray Technol. 1995, 4, 59–66, doi:10.1007/BF02648529.
[22]  Brogan, J.A. Processing and property relationships of thermally sprayed polymer systems. Ph.D. Thesis, State University of New York, Stony Brook, NY, USA, 1996.
[23]  Leger, A.C.; Vardelle, M.; Vardelle, A.; Dussoubs, B.; Fauchais, P. Splat Formation: Ceramic Carticles on Ceramic Substrates. In Advances in Thermal Spray Science & Technology; Berndt, C.C., Sampath, S., Eds.; ASM International: Houston, TX, USA, 1995; pp. 169–174.
[24]  Sampath, S.; Jiang, X.Y.; Matejicek, J.; Leger, A.C.; Vardelle, A. Substrate temperature effects on splat formation, microstructure development and properties of plasma sprayed coatings part i: Case study for partially stabilized zirconia. Mater. Sci. Eng. A 1999, 272, 181–188, doi:10.1016/S0921-5093(99)00459-1.
[25]  Xie, W.; Wang, J.; Berndt, C.C. Spreading behavior and morphology of ethylene methacrylic acid (emaa) deposits via the flame spray process. Coatings 2012, 2, 76–93, doi:10.3390/coatings2020076.
[26]  Petrovicova, E.; Schadler, L.S. Thermal spraying of polymers. Int. Mater. Rev. 2002, 47, 169–190, doi:10.1179/095066002225006566.
[27]  Jiang, X.; Matejicek, J.; Sampath, S. Substrate temperature effects on the splat formation, microstructure development and properties of plasma sprayed coatings part ii: Case study for molybdenum. Mater. Sci. Eng. A 1999, 272, 189–198, doi:10.1016/S0921-5093(99)00461-X.
[28]  Lide, D.R. Crc Handbook of Chemistry and Physics; CRC Press: London, UK, 1995; p. 182.
[29]  Bejan, A.; Kraus, A.D. Heat Transfer Handbook; John Wiley & Sons: Hoboken, NJ, USA, 2003.
[30]  Davis, J.R. Handbook of Thermal Spray Technology; ASM International: Materials Park, OH, USA, 2004; p. 338.
[31]  Brogan, J.A.; Berndt, C.C. The coalescence of combustion-sprayed ethylene-methacrylic acid copolymer. J. Mater. Sci. 1997, 32, 2099–2106, doi:10.1023/A:1018526906452.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133