全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Coatings  2013 

Characterisation Studies of the Structure and Properties of As-Deposited and Annealed Pulsed Magnetron Sputtered Titania Coatings

DOI: 10.3390/coatings3030166

Keywords: titanium dioxide, magnetron sputtering, Raman, XRD

Full-Text   Cite this paper   Add to My Lib

Abstract:

Titanium dioxide thin films are durable, chemically stable, have a high refractive index and good electro/photochemical proprieties. Consequently, they are widely used as anti-reflective layers in optical devices and large area glazing products, dielectric layers in microelectronic devices and photo catalytic layers in self-cleaning surfaces. Titania coatings may have amorphous or crystalline structures, where three crystalline phases of TiO 2 can be obtained: anatase, rutile and brookite, although the latter is rarely found. It is known, however, that the structure of TiO 2 coatings is sensitive to deposition conditions and can also be modified by post-deposition heat treatments. In this study, titania coatings have been deposited onto soda-lime glass substrates by reactive sputtering from a metallic target. The magnetron was driven in mid-frequency pulsed DC mode. The as-deposited coatings were analysed by micro Raman spectroscopy, X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Selected coatings were annealed at temperatures in the range 200–700 °C and re-analysed. Whilst there was weak evidence of a nanocrystallinity in the as-deposited films, it was observed that these largely amorphous low temperature structures converted into strongly crystalline structures at annealing temperatures above 400 °C.

References

[1]  O’Regan, B.; Gr?tzel, M. A low-cost, high-efficiency solar cell based on dye sensitized colloidal TiO2 films. Nature 1991, 353, 737–740, doi:10.1038/353737a0.
[2]  Piispanen, M.; Hupa, L. Comparison of self-cleaning properties of three titania coatings on float glass. App. Surf. Sci. 2011, 258, 1126–1131, doi:10.1016/j.apsusc.2011.09.048.
[3]  Glaser, H.J. Large Area Glass Coating; Von Ardenne Anglgentechnik GmbH: Dresden, Germany, 2000.
[4]  Chiba, K.; Takahashi, T.; Kageyama, T.; Oda, H. Low-emissivity coating of amorphous diamond-like carbon/Ag-alloy multilayer on glass. App. Surf. Sci. 2005, 246, 48–51, doi:10.1016/j.apsusc.2004.10.046.
[5]  Ando, E.; Suzuki, S.; Aomine, N.; Miyazaki, M.; Tada, M. Sputtered silver-based low-emissivity coatings with high moisture durability. Vacuum 2000, 59, 792–799, doi:10.1016/S0042-207X(00)00349-3.
[6]  Hammarberg, E.; Roos, A. Antireflection treatment of low-emitting glazings for energy efficient windows with high visible transmittance. Thin Solid Films 2003, 442, 222–226, doi:10.1016/S0040-6090(03)00986-6.
[7]  Mattox, D.M. Handbook of Physical Vacuum Deposition (PVD) Processing; Noyes Publications: Westwood, NJ, USA, 1998.
[8]  Yu, J.C.; Yu, J.; Zhao, J. Enhanced photocatalytic activity of mesoporous and ordinary TiO2 thin films by sulfuric acid treatment. App. Cat. B Environ. 2002, 36, 31–43, doi:10.1016/S0926-3373(01)00277-6.
[9]  Vorotilov, K.A.; Orlova, E.V.; Petrovsky, V.I. Sol-gel TiO2 films on silicon substrates. Thin Solid Films 1992, 207, 180–184, doi:10.1016/0040-6090(92)90120-Z.
[10]  Yoko, T.; Hu, L.; Kozuka, H.; Sakka, S. Photoelectrochemical properties of TiO2 coating films prepared using different solvents by the sol-gel method. Thin Solid Films 1996, 283, 188–195, doi:10.1016/0040-6090(95)08222-0.
[11]  Yates, H.M.; Nolan, M.G.; Shell, D.W.; Pemble, M.E. The role of nitrogen doping on the development of visible light-induced photocatalytic activity in thin TiO2 films grown on glass by chemical vapour deposition. J. Photochem. Photobiol. A Chem. 2006, 179, 213–223, doi:10.1016/j.jphotochem.2005.08.018.
[12]  Lu, J.-P.; Wang, J.; Raj, R. Solution precursor chemical vapor deposition of titanium oxide thin films. Thin Solid Films 1991, 204, L13–L17, doi:10.1016/0040-6090(91)90488-J.
[13]  Yeung, K.S.; Lam, Y.W. A simple chemical vapour deposition method for depositing thin TiO2 films. Thin Solid Films 1983, 109, 169–178, doi:10.1016/0040-6090(83)90136-0.
[14]  Bessergenev, V.G.; Khmelinskii, I.V.; Pereira, R.J.F.; Krisuk, V.V.; Turgambaeva, A.E.; Igumenov, I.K. Preparation of TiO2 films by CVD method and its electrical, structural and optical properties. Vacuum 2002, 64, 275–279, doi:10.1016/S0042-207X(01)00318-9.
[15]  Lee, W.G.; Woo, S.I.; Kim, J.C.; Choi, S.H.; Oh, K.H. Preparation and properties of amorphous TiO2 thin films by plasma enhanced chemical vapour deposition. Thin Solid Films 1994, 237, 105–111, doi:10.1016/0040-6090(94)90245-3.
[16]  Zhang, F.; Jin, S.; Mao, Y.; Zheng, Z.; Chen, Y.; Liu, X. Surface characterization of titanium oxide films synthesized by ion beam enhanced deposition. Thin Solid Films 1997, 310, 29–33, doi:10.1016/S0040-6090(97)00338-6.
[17]  L?bl, P.; Huppertz, M.; Mergel, D. Nucleation and growth in TiO2 films prepared by sputtering and evaporation. Thin Solid Films 1994, 251, 72–79, doi:10.1016/0040-6090(94)90843-5.
[18]  Mardare, D.; Hones, P. Optical dispersion analysis of TiO2 thin films based on variable-angle spectroscopic ellipsometry measurements. Mat. Sci. Eng. B 1999, 68, 42–47, doi:10.1016/S0921-5107(99)00335-9.
[19]  Gratzel, M. Nanocrystalline solar cells. Renew. Energ. 1994, 5, 118–133, doi:10.1016/0960-1481(94)90361-1.
[20]  Meng, L.-J.; dos Santos, M.P. Investigations of titanium oxide films deposited by d.c. reactive magnetron sputtering in different sputtering pressures. Thin Solid Films 1993, 226, 22–29, doi:10.1016/0040-6090(93)90200-9.
[21]  Schiller, S.; Beister, G.; Sieber, W.; Schirmer, G.; Hacker, E. Influence of deposition parameters on the optical and structural properties of TiO2 films produced by reactive d.c. plasmatron sputtering. Thin Solid Films 1981, 83, 239–245, doi:10.1016/0040-6090(81)90673-8.
[22]  Li Bassi, A.; Cattaneo, D.; Russo, V.; Bottani, C.E.; Barborini, E.; Mazza, T.; Piseri, P.; Milani, P.; Ernst, F.O.; Wegner, K.; et al. Raman spectroscopy characterization of titania nanoparticles produced by flame pyrolysis: The influence of size and stoichiometry. J. Appl. Phys. 2005, 98, 1–9.
[23]  Giolli, C.; Borgioli, F.; Credi, A.; Di Fabio, A.; Fossati, A.; Miranda, M.M.; Parmeggiani, S.; Rizzi, G.; Scrivani, A.; Troglio, S.; et al. Characterization of TiO2 coatings prepared by a modified electric arc-physical vapour deposition system. Surf. Coat. Technol. 2007, 202, 13–22, doi:10.1016/j.surfcoat.2007.04.043.
[24]  Sekiya, T.; Ohta, S.; Kamei, S.; Hanakawa, M.; Kurita, S. Raman spectroscopy and phase transition of anatase TiO2 under high pressure. J. Phys. Chem. Solids 2001, 62, 717–721, doi:10.1016/S0022-3697(00)00229-8.
[25]  Khan, A.F.; Mehmood, M.; Aslam, M.; Shah, S.I. Nanostructured multilayer TiO2-Ge films with quantum confinement effects for photovoltaic applications. J. Colloid Interface Sci. 2010, 343, 271–280, doi:10.1016/j.jcis.2009.11.045.
[26]  Karunagaran, B.; Kim, K.; Mangalaraj, D.; Yi, J.; Velumani, S. Structural, optical and Raman scattering studies on DC magnetron sputtered titanium dioxide thin films. Sol. Energy Mater. Sol. Cells 2005, 88, 199–208, doi:10.1016/j.solmat.2004.03.008.
[27]  Balaji, S.; Djaoued, Y.; Robichaud, J. Photon confinement studies in nanocrystalline anatase-TiO2 thin films by micro-Raman spectroscopy. J. Raman Spectrosc. 2006, 37, 1416–1422, doi:10.1002/jrs.1566.
[28]  Xie, Y.; Zhao, X.; Tao, H.; Zhao, Q.; Liu, B.; Yuan, Q. The influence of O2 partial pressure on the structure and surface wettability of C-modified TiO2 films prepared by magnetron co-sputtering. Chem. Phys. Letters 2008, 457, 148–153, doi:10.1016/j.cplett.2008.03.078.
[29]  Hammond, C. The Basics of Crystallography and Diffraction; Oxford University Press Inc.: New York, NY, USA, 2001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133