Titanium dioxide (titania) is widely used as a photocatalyst for its moderate band gap, high photoactivity, recyclability, nontoxicity, low cost and its significant chemical stability. The anatase phase of titania is known to show the highest photocatalytic activity, however, the presence of this phase alone is not sufficient for sustained activity. In this study TiO 2 coatings were deposited onto glass substrates by mid-frequency pulsed magnetron sputtering from metallic targets in reactive mode using a Full Face Erosion (FFE) magnetron, which allows the magnetic field to be modulated during the deposition process. The as-deposited coatings were analysed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and micro-Raman spectroscopy. Selected coatings were then annealed at temperatures in the range of 400–700 °C and re-analysed. The photocatalytic activity of the coatings was investigated through measurements of the degradation of organic dyes, such as methyl orange, under the influence of UV and fluorescent light sources. It has been demonstrated that, after annealing, the pulsed magnetron sputtering process produced photo-active surfaces and that the activity of the coatings under exposure to fluorescent lamps was some 35%–45% of that observed under exposure to UV lamps.
References
[1]
Gloss, D.; Frach, P.; Zywitzki, O.; Klinkenberg, S.; Gottfried, C. Photocatalytic titanium dioxide thin films prepared by reactive pulse magnetron sputtering at low temperature. Surf. Coat. Technol. 2005, 200, 967–971, doi:10.1016/j.surfcoat.2005.01.018.
[2]
Minemoto, T.; Negami, T.; Nishiwaki, S.; Takakuraa, H.; Hamakawa, Y. Preparation of Zn1?xMgxO films by radio frequency magnetron sputtering. Thin Solid Films 2000, 372, 173–176, doi:10.1016/S0040-6090(00)01009-9.
Kluth, O.; Rech, B.; Houben, L.; Wieder, S.; Sch?pe, G.; Beneking, C.; Wagner, H.; L?ffl, A.; Schock, H.W. Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells. Thin Solid Films 1999, 351, 247–253, doi:10.1016/S0040-6090(99)00085-1.
[5]
Fortunato, E.; Nunes, P.; Costa, D.; Brida, D.; Ferreira, I.; Martins, R. Characterisation of aluminium doped zinc oxide thin films deposited on polymeric substrates. Vacuum 2002, 64, 233–236, doi:10.1016/S0042-207X(01)00319-0.
[6]
Szyszka, B. Transparent and conductive aluminum doped zinc oxide films prepared by mid-frequency reactive magnetron sputtering. Thin Solid Films 1999, 251, 164–169, doi:10.1016/S0040-6090(99)00158-3.
[7]
Ding, X.Z.; Liu, X.H. Correlation between anatase-to-rutile transformation and grain growth in nanocrystalline titania powders. J. Mat. Res. 1998, 13, 2556–2559, doi:10.1557/JMR.1998.0356.
[8]
Sicha, J.; Musil, J.; Meissner, M.; Cerstvy, R. Nanostructure of photocatalytic TiO2 films sputtered at temperatures below 200 °C. Appl. Surf. Sci. 2008, 254, 3793–3800, doi:10.1016/j.apsusc.2007.12.003.
[9]
Rawat, R.S.; Aggarwal, V.; Hassan, M.; Lee, P.; Springham, S.V.; Tan, T.L.; Lee, S. Nano-phase titanium dioxide thin film deposited by repetitive plasma focus: Ion irradiation and annealing based phase transformation and agglomeration. Appl. Surf. Sci. 2008, 255, 2932–2941, doi:10.1016/j.apsusc.2008.08.055.
[10]
Bendavid, A.; Martin, P.J.; Preston, E.W. The effect of pulsed direct current substrate bias on the properties of titanium dioxide thin films deposited by filtered cathodic vacuum arc deposition. Thin Solid Films 2008, 517, 494–499, doi:10.1016/j.tsf.2008.06.060.
[11]
Long, H.; Yang, G.; Chen, A.; Li, Y.; Lu, P. Growth and characteristics of laser deposited anatase and rutile TiO2 films on Si substrates. Thin Solid Films 2008, 517, 745–749, doi:10.1016/j.tsf.2008.08.179.
[12]
Srivatsa, K.M.K.; Bera, M.; Basu, A. Pure brookite titania crystals with large surface area deposited by plasma enhanced chemical vapour deposition technique. Thin Solid Films 2008, 516, 7443–7446, doi:10.1016/j.tsf.2008.02.002.
[13]
Fusi, M.; Russo, V.; Casari, C.S.; Bassi, A.L.; Bottani, C.E. Titanium oxide nanostructured films by reactive pulsed laser deposition. Appl. Surf. Sci. 2009, 255, 5334–5337, doi:10.1016/j.apsusc.2008.06.206.
Henderson, P.S.; Kelly, P.J.; Arnell, R.D.; B?cker, H.; Bradley, J.W. Investigation into the properties of titanium based films deposited using pulsed magnetron sputtering. Surf. Coat. Technol. 2003, 174, 779–783.
[16]
Kelly, P.J.; Arnell, R.D. The influence of deposition parameters on the structure of Al, Zr and W coatings deposited by closed-field unbalanced magnetron sputtering. Surf. Coat. Technol. 1996, 86–87, 425–431, doi:10.1016/S0257-8972(96)02996-9.
[17]
Kelly, P.J.; Bradley, J.W. Pulsed magnetron sputtering—Process overview and applications. J. Opto. Adv. Mat. 2009, 11, 1101–1107.
[18]
Yates, H.M.; Brook, L.A.; Ditta, I.B.; Evans, P.; Foster, H.A.; Sheel, D.W.; Steele, A. Photo-induced self-cleaning and biocidal behaviour of titania and copper oxide multilayers. J. Photochem. Photobiol. A Chem. 2008, 197, 197–205, doi:10.1016/j.jphotochem.2007.12.023.
[19]
Zhang, W.; Li, Y.; Zhu, S.; Wang, F. Fe-doped photocatalytic TiO2 film prepared by pulsed DC reactive magnetron sputtering. J. Vac. Sci. Technol. 2003, A21, 1877–1882.
[20]
Kok, Y.N.; Kelly, P.J. Properties of pulsed magnetron sputtered TiO2 coatings grown under different magnetron configurations and power deliver modes. Plasma Proc. Polym. 2007, 4, 299–304, doi:10.1002/ppap.200730804.
[21]
Zhao, L.; Jiang, Q.; Lian, J. Visible-light photocatalytic activity of nitrogen-doped TiO2 thin film prepared by pulsed laser deposition. Appl. Surf. Sci. 2008, 254, 4620–4625, doi:10.1016/j.apsusc.2008.01.069.
[22]
Rampaul, A.; Parkin, I.P.; O’Neill, S.A.; de Souza, J.; Mills, A.; Elliot, N. Titania and tungsten doped titania thin films on glass; active photocatalysts. Polyhedron 2003, 22, 35–44, doi:10.1016/S0277-5387(02)01333-5.
[23]
Park, S.E.; Joo, H.; Kang, J.W. Effect of impurities in TiO2 thin films on trichloroethylene conversion. Sol. Energy Mater. Sol. Cells 2004, 83, 39–53, doi:10.1016/j.solmat.2004.02.012.
[24]
Ratova, M.; Kelly, P.J.; West, G.; Lordanova, I. Enhanced properties magnetron sputtered photocatalytic coatings via transition metal doping. Surf. Coat. Technol. 2013, 228, 544–549, doi:10.1016/j.surfcoat.2012.04.037.
[25]
Kelly, P.J.; West, G.; Kok, Y.N.; Bradley, J.W.; Swindells, I.; Clarke, G.C.B. A comparison of the characteristics of planar and cylindrical magnetrons operating in pulsed DC and AC modes. Surf. Coat. Technol. 2007, 202, 952–956, doi:10.1016/j.surfcoat.2007.04.130.
[26]
Fernández, A.; Lassaletta, G.; Jiménez, V.M.; Justo, A.; González-Elipe, A.R.; Herrmann, J.M.; Tahiri, H.; Ait-Ichou, Y. Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification. Appl. Catal. B Env. 1995, 7, 49–63, doi:10.1016/0926-3373(95)00026-7.
[27]
Zhu, J.; Deng, Z.; Chen, F.; Zhang, J.; Chen, H.; Anpo, M.; Huang, J.; Zhang, L. Hydrothermal doping method for preparation of Cr3+-TiO2 photocatalysts with concentration gradient distribution of Cr3+. Appl. Catal. B Env. 2006, 62, 329–325, doi:10.1016/j.apcatb.2005.08.013.
[28]
Kim, J.Y.; Park, C.; Yoon, J. Developing a testing method for antimicrobial efficacy on TiO2 photocatalytic products. Environ. Eng. Res. 2008, 13, 136–140, doi:10.4491/eer.2008.13.3.136.
[29]
Evans, P.; Pemble, M.E.; Sheel, D.W.; Yates, H.M. Multifunctional self-cleaning thermochromic films by atmospheric pressure chemical vapour deposition. J. Photochem. Photobiol. A Chem. 2007, 189, 387–397, doi:10.1016/j.jphotochem.2007.02.031.
[30]
Evans, P.; English, T.; Hammond, D.; Pemble, M.E.; Sheel, D.W. The role of SiO2 barrier layers in determining the structure and photocatalytic activity of TiO2 films deposited on stainless steel. Appl. Catal. A Gen. 2007, 321, 140–146, doi:10.1016/j.apcata.2007.01.039.
[31]
Kenanakis, G.; Giannakoudakis, Z.; Vernardou, D.; Savvakis, C.; Katsarakis, N. Photocatalytic degradation of stearic acid by ZnO thin films and nanostructures deposited by different chemical routes. J. Catal. Today 2010, 151, 34–38, doi:10.1016/j.cattod.2010.02.054.
[32]
Brook, L.A.; Evans, P.; Foster, H.A.; Pembleb, M.E.; Steele, A.; Sheel, D.W.; Yates, H.M. Highly bioactive silver and silver/titania composite films grown by chemical vapour deposition. J. Photochem. Photobiol. A Chem. 2007, 187, 53–63, doi:10.1016/j.jphotochem.2006.09.014.
[33]
Evans, P.; Pemble, M.E.; Sheel, D.W. Precursor-directed control of crystalline type in atmospheric pressure CVD growth of TiO2 on stainless steel. J. Chem. Mat. 2006, 18, 5750–5755, doi:10.1021/cm060816k.
[34]
Guettai, N.; Amar, H.A. Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension, Part I, Parametric Study. Desalination 2005, 185, 427–437.
[35]
Hazan, R.; Sreekantan, S.; Lockman, Z.; Mat, I. A study on photocatalytic degradation of methyl orange using carbon doped TiO2 nanotubes. J. Fund. Sci. 2010, 96, 355–365.
[36]
Carcel, R.A.; Andronic, L.; Duta, A. Cd2+ modified TiO2 for methyl orange photodegradation. Rev. Roum. Chim. 2009, 54, 309–312.
[37]
Kim, S.; Ehrman, S.H. Photocatalytic activity of a surface-modified anatase and rutile titania nanoparticle mixture. J. Col. Interf. Sci. 2009, 338, 304–307, doi:10.1016/j.jcis.2009.06.047.
[38]
Onifade, A.A.; Kelly, P.J. The influence of deposition parameters on the structure and properties of magnetron-sputtered titania coatings. Thin Solid Films 2006, 494, 8–12, doi:10.1016/j.tsf.2005.08.180.
[39]
Ohno, S.; Takasawa, N.; Sato, Y.; Yoshikawa, M.; Suzuki, K.; Frach, P.; Shugesato, Y. Photocatalytic TiO2 films deposited by reactive magnetron sputtering with unipolar pulsing and plasma emission control systems. Thin Solid Films 2006, 496, 126–130, doi:10.1016/j.tsf.2005.08.252.
[40]
Evans, P.; Mantke, S.; Mills, A.; Robinson, A.; Sheel, D.W. A comparative study of three techniques for determining photocatalytic activity. J. Photochem. Photobiol. A Chem. 2007, 188, 387–391, doi:10.1016/j.jphotochem.2006.12.040.
[41]
Mills, A.; McGrady, M. A study of new photocatalyst indicator inks. J. Photochem. Photobiol. A Chem. 2008, 193, 228–236, doi:10.1016/j.jphotochem.2007.06.029.
[42]
Mills, A.; Hepburn, J.; McFarlane, M. A novel, fast-responding, indicator ink for thin film photocatalytic surfaces. ACS Appl. Mat. Interf. 2009, 1, 1163–1165, doi:10.1021/am9001502.
[43]
Coutinho, C.A.; Gupta, V.K. Photocatalytic degradation of methyl orange using polymer-titania microcomposites. J. Col. Interf. Sci. 2009, 333, 64.
Zywitzki, O.; Modes, T.; Frach, P.; Gloss, D. Effect of Structure and Roughness on Photocatalytic Properties of TiO2. In Proceedings of European Materials Research Society (EMRS): European Materials Research Society (E-MRS) Spring Meeting, Strasbourg, France, 28 May–1 June 2007.
[46]
L?bl, P.; Huppertz, M.; Mergel, D. Nucleation and growth in TiO2 films prepared by sputtering and evaporation. Thin Solid Films 1994, 251, 72–79, doi:10.1016/0040-6090(94)90843-5.