全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Chemosensors  2013 

Autonomous Oscillation of Nonthermoresponsive Polymers and Gels Induced by the Belousov–Zhabotinsky Reaction

DOI: 10.3390/chemosensors1020003

Keywords: BZ reaction, gel, polymer chain, actuator, autonomous, self-oscillation

Full-Text   Cite this paper   Add to My Lib

Abstract:

This review introduces the self-oscillating behavior of two types of nonthermoresponsive polymer systems with Ru catalyst moieties for the Belousov-Zhabotinsky (BZ) reaction: one with a poly-vinylpyrrolidone (PVP) main chain, and the other with a poly(2-propenamide) (polyacrylamide) (PAM) main chain. The amplitude of the VP-based self-oscillating polymer chain and the activation energy for self-oscillation are hardly affected by the initial concentrations of the BZ substrates. The influences of the initial concentrations of the BZ substrates and the temperature on the period of the swelling-deswelling self-oscillation are examined in detail. Logarithmic plots of the period against the initial concentration of one BZ substrate, when the concentrations of the other two BZ substrates are fixed, show good linear relationships. The period of the swelling-deswelling self-oscillation decreases with increasing temperature, in accordance with the Arrhenius equation. The maximum frequency (0.5 Hz) of the poly(VP- co-Ru(bpy) 3) gel is 20 times that of the poly(NIPAAm- co-Ru(bpy) 3) gel. It is also demonstrated that the amplitude of the volume self-oscillation for the gel has a tradeoff with the self-oscillation period. In addition, this review reports the self-oscillating behavior of an AM-based self-oscillating polymer chain as compared to that of the VP-based polymer chain.

References

[1]  Okano, T. Biorelated Polymers and Gels—Controlled Release and Applications in Biomedical Engineering; Academic Press: San Diego, CA, USA, 1998.
[2]  Harada, A.; Kataoka, K. Chain length recognition: Core-shell supramolecular assembly from oppositely charged block copolymers. Science 1999, 283, 65–67, doi:10.1126/science.283.5398.65.
[3]  Hoffman, A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 2002, 43, 3–12, doi:10.1016/S0169-409X(01)00239-3.
[4]  Bhattacharya, S.; Eckert, F.; Boyko, V.; Pich, A. Temperature-, pH-, and magneticfield- sensitive hybrid microgels. Small 2007, 3, 650–657, doi:10.1002/smll.200600590.
[5]  Kwon, I.C.; Bae, Y.H.; Kim, S.W. Electrically credible polymer gel for controlled release of drugs. Nature 1991, 354, 291–293, doi:10.1038/354291a0.
[6]  Chaterji, S.; Kwon, I.K.; Park, K. Hydrogels for medical and biomedical applications. Prog. Polym. Sci. 2007, 32, 1083–1122, doi:10.1016/j.progpolymsci.2007.05.018.
[7]  Geng, F.; Ma, R.; Nakamura, A.; Akatsuka, K.; Ebina, Y.; Yamauchi, Y.; Miyamoto, N.; Tateyama, Y.; Sasaki, T. Reversible, instant, and unusually stable ~100-fold swelling of inorganic layered materials. Nat. Commun. 2013, 4, 1632:1–1632:7.
[8]  Okumura, Y.; Ito, K. The polyrotaxane gel: A topological gel by figure-of-eight cross-links. Adv. Mater. 2001, 13, 485–487, doi:10.1002/1521-4095(200104)13:7<485::AID-ADMA485>3.0.CO;2-T.
[9]  Kim, J.; Nayak, S.; Lyon, L.A. Bioresponsive hydrogel microlenses. J. Am. Chem. Sci. 2005, 127, 9588–9592, doi:10.1021/ja0519076.
[10]  Kwon, G.H.; Park, J.Y.; Kim, J.Y.; Frisk, M.L.; Beebe, D.J.; Lee, S.H. Biomimetic soft multifunctional miniature aquabots. Small 2008, 4, 2148–2153, doi:10.1002/smll.200800315.
[11]  Seeman, N.C. Nucleic acid junctions and lattices. J. Theor. Biol. 1982, 99, 237–247, doi:10.1016/0022-5193(82)90002-9.
[12]  Winfree, E.; Liu, F.; Wenzler, L.; Seeman, N. Design and self-assembly of two-dimensional DNA crystals. Nature 1998, 394, 539–544, doi:10.1038/28998.
[13]  Yan, H.; Park, S.H.; Finkelstein, G.; Reif, J.; LaBean, T. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 2003, 301, 1882–1884, doi:10.1126/science.1089389.
[14]  He, Y.; Chen, Y.; Liu, H.; Ribbe, A.; Mao, C. Self-assembly of hexagonal DNA two-dimensional (2D) arrays. J. Am. Chem. Soc. 2005, 127, 12202–12203.
[15]  Murata, S.; Konagaya, A.; Kobayashi, S.; Saito, H.; Hagiya, M. Molecular robotics: A new paradigm for artifacts. New Gener. Comput. 2013, 31, 27–45, doi:10.1007/s00354-012-0121-z.
[16]  Kuzuya, Y.; Sakai, T.; Yamazaki, Y.; Xu, Y.; Komiyama, M. Nanomechanical DNA origami “single-molecule beacons” directly imaged by atomic force microscopy. Nat. Commun. 2011, 2, doi:10.1038/ncomms1452.
[17]  Steinberg, I.Z.; Oplatka, A.; Kachalsky, A. Mechanochemnical engines. Nature 1966, 210, 568–571, doi:10.1038/210568a0.
[18]  Oguro, K.; Kawami, Y.; Takenaka, H. An actuator element of polyelectrotyte gel membrane-electrode composite. Bull. Gov. Ind. Res. Inst. Osaka 1992, 43, 21–24.
[19]  Fukushima, T.; Asaka, K.; Kosaka, A.; Aida, T. Fully plastic actuator through layer-by-layer casting with ionic-liquid-based bucky gel. Angew. Chem. Int. Ed. 2005, 44, 2410–2413, doi:10.1002/anie.200462318.
[20]  Otake, M.; Kagami, Y.; Inaba, M.; Kim, B.; Inoue, H. Motion design of a starfish-shaped gel robot made of electro-active polymer gel. Robot. Auton. Syst. 2002, 40, 185–191, doi:10.1016/S0921-8890(02)00243-9.
[21]  Feinberg, A.W.; Feigel, A.; Shevkoplyas, S.S.; Sheehy, S.; Whitesides, G.M.; Parker, K.K. Muscular thin films for building actuators and powering devices. Science 2007, 317, 366–1370.
[22]  Ma, M.; Guo, L.; Anderson, D.G.; Langer, R. Bio-inspired polymer composite actuator and generator driven by water gradients. Science 2013, 339, 186–189, doi:10.1126/science.1230262.
[23]  Beebe, D.J.; Moore, J.S.; Bauer, J.M.; Yu, Q.; Liu, R.H.; Devadoss, C.; Jo, B.H. Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 2000, 404, 588–590, doi:10.1038/35007047.
[24]  Asoh, T.; Matsusaki, M.; Kaneko, T.; Akashi, M. Fabrication of temperature-responsive bending hydrogels with a nanostructured gradient. Adv. Mater. 2008, 20, 2080–2083, doi:10.1002/adma.200702727.
[25]  Ishiwatari, T.; Kawaguchi, M.; Mitsuishi, M. Oscillatry reactions in polymer systems. J. Polym. Sci. A Polym. Chem. 1984, 22, doi:10.1002/pol.1984.170221033.
[26]  Yoshida, R.; Sakai, T.; Ito, S.; Yamaguchi, T. Self-oscillation of polymer chains with rhythmical soluble-insoluble changes. J. Am. Chem. Sci. 2002, 124, 8095–8098, doi:10.1021/ja012584q.
[27]  Yoshida, R.; Takahashi, T.; Yamaguchi, T.; Ichijo, H. Self-oscillating gel. J. Am. Chem. Soc. 1996, 118, 5134–5135, doi:10.1021/ja9602511.
[28]  Zaikin, A.N.; Zhabotinsky, A.M. Concentration wave propagation in two-dimensional liquid-phase self-oscillating system. Nature 1970, 225, 535–537, doi:10.1038/225535b0.
[29]  Field, R.J.; Burger, M. Oscillations and Traveling Waves in Chemical Systems; John Wiley & Sons: New York, NY, USA, 1985.
[30]  Field, R.J.; Noyes, R.M. Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction. J. Chem. Phys. 1974, 60, 1877–1884, doi:10.1063/1.1681288.
[31]  Gyorgyi, L.; Turanyi, T.; Field, R.J. Mechanistic details of the oscillatory Belousov-Zhabotinskii reaction. J. Chem. Phys. 1990, 94, 7162–7170, doi:10.1021/j100381a039.
[32]  Turanyi, T.; Gyorgyi, L.; Field, R.J. Analysis and simplification of the GTF model of the Belousov-Zhabotinsky reaction. J. Chem. Phys. 1993, 97, 1931–1941, doi:10.1021/j100111a035.
[33]  Wood, P.M.; Ross, J. A quantitative study of chemical waves in the Belousov-Zhabotinsky reaction. J. Chem. Phys. 1985, 82, 1924:1–1924:13.
[34]  Tyson, J.J.; Fife, P.C. Target patterns in a realistic model of the Belousov-Zhabotinskii reaction. J. Chem. Phys. 1980, 73, 2224:1–2224:14.
[35]  Mori, H.; Kuramoto, Y. Dissipative Structures and Chaos; Springer-Verlag: Berlin, Germany, 1997.
[36]  Shen, J.; Pullela, S.R.; Marquez, M.; Cheng, Z. Ternary phase diagram for the Belousov-Zhabotinsky reaction-induced mechanical oscillation of intelligent PNIPAM colloids. J. Phys. Chem. A 2007, 111, 12081–12085, doi:10.1021/jp072574x.
[37]  Pullela, S.R.; Shen, J.; Marquez, M.; Cheng, Z. A comparative study of temperature dependence of induction time and oscillatory frequency in polymer-immobilized and free catalyst Belousov-Zhabotinsky reactions. J. Polym. Sci. A. Polym. phys. 2009, 47, 847–854, doi:10.1002/polb.21682.
[38]  Pullela, S.R.; Cristancho, D.; He, P.; Luo, D.; Hall, K.R.; Cheng, Z. Temperature dependence of the Oregonator model for the Belousov-Zhabotinsky reaction. Phys. Chem. Chem. Phys. 2009, 11, 4236–4243, doi:10.1039/b820464k.
[39]  Hara, Y.; Yoshida, R. Self-oscillation of polymer chains induced by the Belousov-Zhabotinsky reaction under acid-free conditions. J. Phys. Chem. B 2005, 109, 9451–9454, doi:10.1021/jp0501704.
[40]  Hara, Y.; Yoshida, R. Damping behavior of aggregation-disaggregation self-oscillation for a polymer chain. Marcomol. Rapid Commun. 2009, 30, 1656–1662, doi:10.1002/marc.200900262.
[41]  Hara, Y.; Yoshida, R. Self-oscillating polymer fueled by organic acid. J. Phys. Chem. B 2008, 112, 8427–8429, doi:10.1021/jp802014d.
[42]  Hara, Y.; Maeda, S.; Hashimoto, S.; Yoshida, R. Molecular design and functional control of novel self-oscillating polymers. Int. J. Mol. Sci. 2010, 11, 704–718, doi:10.3390/ijms11020704.
[43]  Hara, Y.; Yoshida, R. Control of oscillating behavior for the self-oscillating polymer with pH-control site. Langmuir 2005, 21, 9773–9776, doi:10.1021/la052070v.
[44]  Hara, Y.; Yoshida, R. A viscosity self-oscillation of polymer solution induced by the BZ reaction under acid-free condition. J. Chem. Phys. 2008, 128, 224904:1–224904:4.
[45]  Maeda, S.; Hara, Y.; Sakai, T.; Yoshida, R.; Hashimoto, S. Self-walking gel. Adv. Mater. 2007, 19, 3480–3484, doi:10.1002/adma.200700625.
[46]  Maeda, S.; Hara, Y.; Yoshida, R.; Hashimoto, S. Control of the dynamic motion of a gel actuator driven by the Belousov-Zhabotinsky reaction. Macromol. Rapid. Commun. 2008, 29, 401–405, doi:10.1002/marc.200700717.
[47]  Maeda, S.; Hara, Y.; Yoshida, R.; Hashimoto, S. Peristaltic motion of polymer gels. Angew. Chem. Int. Ed. 2008, 47, 6690–6693, doi:10.1002/anie.200801347.
[48]  Nakamaru, S.; Maeda, S.; Hara, Y.; Hashimoto, S. Control of autonomous swelling-deswelling behavior for a polymer gel. J. Phys. Chem. B 2009, 113, 4609–4613, doi:10.1021/jp811228y.
[49]  Hara, Y.; Jahan, R.A. Influence of initial substrate concentration of the Belouzov-Zhabotinsky reaction on transmittance self-oscillation for a nonthermoresponsive polymer chain. Polymers 2011, 3, 330–339, doi:10.3390/polym3010330.
[50]  Hara, Y. Trasmittance self-oscillating behavior of a non-thermoresponsive polymer chain induced by the Belouzov-Zhabotinsky (BZ) reaction. Key Eng. Mater. 2011, 480–481, 369–374, doi:10.4028/www.scientific.net/KEM.480-481.369.
[51]  Hara, Y. Effect of substrate concentrations of the BZ reaction on period of self-oscillation for non-thermoresponsive polymer chain. Key Eng. Mater. 2011, 480–481, 357–362, doi:10.4028/www.scientific.net/KEM.480-481.357.
[52]  Hara, Y.; Jahan, R.A. Activation energy of aggregation-disaggregation self-oscillation of polymer chain. Int. J. Mol. Sci. 2012, 13, 16281–16290, doi:10.3390/ijms131216281.
[53]  Hara, Y.; Jahan, R.A. Autonomous self-oscillating behavior of a novel nonthermoresponsive polymer chain. Adv. Mater. Res. 2012, 429, 46–49, doi:10.4028/www.scientific.net/AMR.429.46.
[54]  Hara, Y.; Jahan, R.A. Effect of concentration of nitric acid on the autonomous conformation change of a polymer chain with nonthermoresponsive nature. Adv. Mater. Res. 2012, 429, 42–45, doi:10.4028/www.scientific.net/AMR.429.42.
[55]  Hara, Y.; Jahan, R.A. Soluble-insoluble self-oscillation of a novel nonthermoresponsive polymer chain induced by the Belousov-Zhabotinsky reaction. Adv. Mater. Res. 2012, 429, 37–41, doi:10.4028/www.scientific.net/AMR.429.37.
[56]  Yoshida, R.; Onodera, S.; Yamaguchi, T.; Kokufuta, E. Aspects of the Belousov-Zhabotinsky reaction in polymer gels. J. Phys. Chem. A 1999, 103, 8573–8578, doi:10.1021/jp992027e.
[57]  Miyakawa, K.; Sakamoto, F.; Yoshida, R.; Yamaguchi, T.; Kokufuta, E. Chemical waves in self-oscillating gels. Phys. Rev. E 2000, 62, 793–798.
[58]  Kuhnert, L.; Krug, H.J. Kinetics of chemical waves in the acidic bromate-malonic acid-tris(bipyridine)ruthenium(2+) system in comparison with the ferroin system. J. Phys. Chem. 1987, 91, 730–733, doi:10.1021/j100287a047.
[59]  Yoshida, R.; Tanaka, M.; Onodera, S.; Yamaguchi, T.; Kokufuda, E. In-phase synchronization of chemical and mechanical oscillations in self-oscillating gels. J. Phys. Chem. A 2000, 104, 7549–7555, doi:10.1021/jp0011600.
[60]  Yoshikawa, K. Distinct activation energies for temporal and spatial oscillations in the Belousov-Zhabotinskii reaction. Bull. Chem. Soc. Jpn. 1982, 55, 2042–2045, doi:10.1246/bcsj.55.2042.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133