Stimuli-responsive hydrogels can be used to convert miniature pressure sensors into novel chemomechanical sensors via confinement of the hydrogel sample between a porous membrane and a piezoresistive diaphragm. Chemomechanical sensors could prove beneficial in a variety of applications, including continuous monitoring of bioreactors and biomedical systems. In this study, one hydrogel composition with a high sensitivity to changes in pH was tested in two different chemomechanical sensors in order to compare the data obtained from each sensor design. In the first and older chemomechanical sensor design, a prefabricated hydrogel sample is loaded into the sensor chamber using a screw-on cap. In the newer sensor design, a thinner hydrogel is synthesized in situ and is held in place by a silicon boss that is mechanically connected to a piezoresistive diaphragm. The newer design results in a decreased chemomechanical sensor response time (by 60 times), and maintains a high sensitivity to changes in environmental stimuli.
References
[1]
De, S.; Aluru, N.; Johnson, B.; Crone, W.; Beebe, D.; Moore, J. Equilibrium swelling and kinetics of pH-responsive hydrogels: Models, experiments and simulations. J. Microelectromechanical Syst. 2002, 11, 544–555, doi:10.1109/JMEMS.2002.803281.
Liu, M.; Guo, T. Preparation and swelling properties of crosslinked sodium polyacrylate. J. Appl. Polym. Sci. 2001, 82, 1515–1520, doi:10.1002/app.1990.
[4]
Kuckling, D.; Hoffman, J.; Plotner, M.; Ferse, D.; Kretschmer, K.; Adler, H.; Arndt, K.; Reichelt, R. Photo cross-linkable poly(N-isopropylacrylamide) copolymers III: Micro-fabricated temperature responsive hydrogels. Polymer 2003, 44, 4455–4462.
[5]
Shin, J.; Braun, P.; Lee, W. Fast responsive photonic crystal pH sensor based on template photo-polymerized hydrogel inverse opal. Sens. Actuators B: Chem. 2010, 150, 183–190, doi:10.1016/j.snb.2010.07.018.
[6]
Iwata, T.; Suzuki, K.; Amaya, N.; Higuchi, H.; Masunaga, H.; Sasaki, S.; Kikuchi, H. Control of cross-linking polymerization kinetics and polymer aggregated structure in polymer-stabilized liquid crystalline blue phases. Macromolecules 2009, 42, 2002–2008, doi:10.1021/ma802464w.
[7]
Galeav, I.; Mattiason, B. Smart polymers and what they could do in biotechnology and medicine. Trends Biotechnol. 1999, 17, 335–340, doi:10.1016/S0167-7799(99)01345-1.
[8]
Kurdikar, D.; Peppas, N. Method of determination of initiator efficiency: Application to UV polymerizations using 2,2-dimethoxy-2-phenylacetophenone. Macromolecules 1994, 27, 733–738.
[9]
Herber, S.; Olthius, W.; Bergveld, P.; van den Berg, A. Exploitation of a pH-sensitive hydrogel disk for CO2 detection. Sens. Actuators B: Chem. 2004, 103, 284–289, doi:10.1016/j.snb.2004.04.113.
[10]
Herber, S.; Bomer, J.; Olthius, W.; Bergveld, P.; van den Berg, A. A miniaturized carbon dioxide gas sensor based on sensing of pH-sensitive hydrogel swelling with a pressure sensor. Biomed. Microdevices 2005, 7, 197–204, doi:10.1007/s10544-005-3026-5.
[11]
Ter Steege, R.; Herber, S.; Olthius, W.; Bergveld, P.; van den Berg, A.; Kolkman, J. Assessment of a new prototype hydrogel CO2 sensor comparison with air tonometry. J. Clin. Monit. Comput. 2007, 21, 83–90.
[12]
Lin, G.; Chang, S.; Kuo, C.; Magda, J.; Solzbacher, F. Free swelling and confined smart hydrogels for applications in chemomechanical sensors for physiological monitoring. Sens. Actuators B: Chem. 2009, 136, 186–195, doi:10.1016/j.snb.2008.11.001.
[13]
Schulz, V.; Guenther, M.; Gerlach, G.; Magda, J.; Tathireddy, P.; Rieth, L.; Solzbacher, F. In-vitro investigations of a pH- and ionic-strength-responsive polyelectrolyte hydrogel using a piezoresistive microsensor. Smart Struct. Mater. Nondestruct. Eval. Health Monitor. Diagn. 2009, 7827, 1–16.
[14]
Gerlach, G.; Guenther, M.; Sorber, J.; Suchanek, G. Chemical and pH sensors based on the swelling behavior of hydrogels. Sens. Actuators B: Chem. 2005, 111, 555–561.
[15]
Horkay, F.; Tasaki, I.; Basser, P.J. Osmotic swelling of polyacrylate hydrogels in physiological salt solutions. Biomacromolecules 2000, 1, 84–90.
[16]
Han, I.S.; Han, M.; Kim, J.; Lew, S.; Lee, Y.J.; Horkay, F.; Magda, J.J. Constant-volume hydrogel osmometer: A new device concept for miniature biosensors. Biomacromolecules 2002, 3, 1271–1275.
[17]
Orthner, M.P.; Buetefisch, S.; Magda, J.; Rieth, L.W.; Solzbacher, F. Development, fabrication, and characterization of hydrogel based piezoresistive pressure sensors with perforated diaphragms. Sens. Actuators A: Phys. 2010, 161, 29–38.
[18]
Avula, M.; Busche, N.; Cho, S.H.; Tathireddy, P.; Rieth, L.W.; Magda, J.J.; Solzbacher, F. Effect of Temperature Changes on the Performance of Ionic Strength Biosensors Based on Hydrogels and Pressure Sensors. In Proceedings of the 33rd Annual International Conference of the IEEE EMBS, Boston, MA, USA, 3 August 2011; pp. 1855–1858.
[19]
Lin, G.; Chang, S.; Hao, H.; Tathireddy, P.; Orthner, M.; Magda, J.; Solzbacher, F. Osmotic swelling pressure response of smart hydrogels suitable for chronically implantable glucose sensors. Sens. Actuators B: Chem. 2010, 144, 332–336.
[20]
Tathireddy, P.; Avula, M.; Lin, G.; Cho, S.H.; Guenther, M.; Schulz, V.; Gerlach, G.; Magda, J.J.; Solzbacher, F. Smart Hydrogel Based Microsensing Platform for Continuous Glucose Monitoring. In Proceedings of the 32nd Annual International Conference of the IEEE EMBS, Buenos Aires, Argentina, 4 August 2010; pp. 677–679.
[21]
Lei, M.; Baldi, A.; Nuxoll, E.; Siegel, R.A.; Ziaie, B. A hydrogel-based implantable micromachined transponder for wireless glucose measurement. Diab. Technol.Therap. 2006, 8, 112–122.
[22]
Gerlach, G.; Guenther, M.; Suchaneck, G.; Sorber, J.; Arnt, K.; Richter, A. Application of sensitive hydrogels in chemical and pH sensors. Macromol. Symp. 2004, 210, 403–410, doi:10.1002/masy.200450645.