Investigation of the Deactivation Phenomena Occurring in the Cyclohexane Photocatalytic Oxidative Dehydrogenation on MoOx/TiO2 through Gas Phase and in situ DRIFTS Analyses
In this work, the results of gas phase cyclohexane photocatalytic oxidative dehydrogenation on MoO x/SO 4/TiO 2 catalysts with DRIFTS analysis are presented. Analysis of products in the gas-phase discharge of a fixed bed photoreactor was coupled with in situ monitoring of the photocatalyst surface during irradiation with an IR probe. An interaction between cyclohexane and surface sulfates was found by DRIFTS analysis in the absence of UV irradiation, showing evidence of the formation of an organo-sulfur compound. In particular, in the absence of irradiation, sulfate species initiate a redox reaction through hydrogen abstraction of cyclohexane and formation of sulfate (IV) species. In previous studies, it was concluded that reduction of the sulfate (IV) species via hydrogen abstraction during UV irradiation may produce gas phase SO 2 and thereby loss of surface sulfur species. Gas phase analysis showed that the presence of MoO x species, at same sulfate loading, changes the selectivity of the photoreaction, promoting the formation of benzene. The amount of surface sulfate influenced benzene yield, which decreases when the sulfate coverage is lower. During irradiation, a strong deactivation was observed due to the poisoning of the surface by carbon deposits strongly adsorbed on catalyst surface.
References
[1]
Sannino, D.; Vaiano, V.; Sacco, O.; Ciambelli, P. Mathematical modelling of photocatalytic degradation of methylene blue under visible light irradiation. J. Environ. Chem. Eng. 2013, 1, 56–60, doi:10.1016/j.jece.2013.03.003.
[2]
Sacco, O.; Stoller, M.; Vaiano, V.; Ciambelli, P.; Chianese, A.; Sannino, D. Photocatalytic Degradation of Organic Dyes under Visible Light on N-Doped TiO2 Photocatalysts. Int. J. Photoenergy 2012. Article ID 626759:1–Article ID 626759:8.
Stoller, M.; Movassaghi, K.; Chianese, A. Photocatalytic degradation of orange II in aqueous solutions by immobilized nanostructured titanium dioxide. Chem. Eng. Trans. 2011, 24, 229–234.
[5]
Ibrahim, H.; de Lasa, H. Photo-catalytic conversion of air borne pollutants: Effect of catalyst type and catalyst loading in a novel photo-CREC-air unit. Appl. Catal. B 2002, 38, 201–213, doi:10.1016/S0926-3373(02)00043-7.
[6]
Augugliaro, V.; Bellardita, M.; Loddo, V.; Palmisano, G.; Palmisano, L.; Yurdakal, S. Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis. J. Photochem. Photobiol. C 2012, 13, 224–245, doi:10.1016/j.jphotochemrev.2012.04.003.
[7]
Sannino, D.; Vaiano, V.; Isupova, L.A.; Ciambelli, P. Heterogeneous Photo-Fenton Oxidation of Organic Pollutants on Structured Catalysts. J. Adv. Oxid. Technol. 2012, 15, 294–300.
Molinari, A.; Amadelli, R.; Mazzacani, A.; Sartori, G.; Maldotti, A. Tetralkylammonium and sodium decatungstate heterogenized on silica: Effects of the nature of cations on the photocatalytic oxidation of organic substrates. Langmuir 2002, 18, 5400–5405, doi:10.1021/la0110141.
[10]
Maldotti, A.; Molinari, A.; Amadelli, R. Photocatalysis with organized systems for the oxofunctionalization of hydrocarbons by O2. Chem. Rev. 2002, 102, 3811–3836, doi:10.1021/cr010364p.
[11]
Li, X.; Chen, G.; Po-Lock, Y.; Kutal, C. Photocatalytic oxidation of cyclohexane over TiO2 nanoparticles by molecular oxygen under mild conditions. J. Chem. Technol. Biotechnol. 2003, 78, 1246–1251, doi:10.1002/jctb.872.
[12]
Stoller, M.; Miranda, L.; Chianese, A. Optimal Feed location in a Spinning Disc Reactor for the Production of TiO2 Nanoparticles. Chem. Eng. Trans. 2009, 17, 993–998.
[13]
de Caprariis, B.; Di Rita, M.; Stoller, M.; Verdone, N.; Chianese, A. Reaction-precipitation by a spinning disc reactor: Influence of hydrodynamics on nanoparticles production. Chem. Eng. Sci. 2012, 76, 73–78, doi:10.1016/j.ces.2012.03.043.
[14]
Boarini, P.; Carassiti, V.; Maldotti, A.; Amadelli, R. Photocatalytic oxygenation of cyclohexane on titanium dioxide suspensions: Effect of the solvent and of oxygen. Langmuir 1998, 14, 2080–2085, doi:10.1021/la970384f.
[15]
Almquist, C.B.; Biswas, P. The photo-oxidation of cyclohexane on titanium dioxide: an investigation of competitive adsorption and its effects on product formation and selectivity. Appl. Catal. A 2001, 214, 259–271, doi:10.1016/S0926-860X(01)00495-1.
[16]
Berg, O.; Hamdy, M.S.; Maschmeyer, T.; Moulijn, J.A.; Bonn, M.; Mul, G. On the wavelength-dependent performance of Cr-doped silica in selective photo-oxidation. J. Phys. Chem. C 2008, 112, 5471–5475, doi:10.1021/jp075562k.
[17]
Maldotti, A.; Amadelli, R.; Varani, G.; Tollari, S.; Porta, F. Photocatalytic processes with polyoxotungstates: Oxidation of cyclohexylamine. Inorg. Chem. 1994, 33, 2968–2973, doi:10.1021/ic00091a041.
[18]
Teramura, K.; Tanaka, T.; Yamamoto, T.; Funabiki, T. Photo-oxidation of cyclohexane over alumina-supported vanadium oxide catalyst. J. Mol. Catal. A 2001, 165, 299–301, doi:10.1016/S1381-1169(00)00417-9.
[19]
Almeida, A.R.; Moulijn, J.A.; Mul, G. In situ ATR-FTIR study on the selective photo-oxidation of cyclohexane over anatase TiO2. J. Phys. Chem. C 2008, 112, 1552–1561, doi:10.1021/jp077143t.
[20]
Xu, W.; Raftery, D.; Francisco, J.S. Effect of irradiation sources and oxygen concentration on the photocatalytic oxidation of 2-propanol and acetone studied by in situ FTIR. J. Phys. Chem. B 2003, 107, 4537–4544, doi:10.1021/jp025995h.
[21]
Ciambelli, P.; Sannino, D.; Palma, V.; Vaiano, V.; Bickley, R.I. Reaction mechanism of cyclohexane selective photo-oxidation to benzene on molybdena/titania catalysts. Appl. Catal. A 2008, 349, 140–147, doi:10.1016/j.apcata.2008.07.019.
[22]
Ciambelli, P.; Sannino, D.; Palma, V.; Vaiano, V.; Mazzei, R.S. Improved Performances of a Fluidized Bed Photoreactor by a Microscale Illumination System. Int. J. Photoenergy 2009. Article ID 709365:1– Article ID 709365:7.
[23]
Palma, V.; Sannino, D.; Vaiano, V.; Ciambelli, P. Fluidized-Bed Reactor for the Intensification of Gas-Phase Photocatalytic Oxidative Dehydrogenation of Cyclohexane. Ind. Eng. Chem. Res. 2010, 49, 10279–10286, doi:10.1021/ie1005383.
[24]
Ciambelli, P.; Sannino, D.; Palma, V.; Vaiano, V. The effect of sulfate doping on nanosized TiO2 and MoOx/TiO2 catalysts in cyclohexane photooxidative dehydrogenation. Int. J. Photoenergy 2008. Article ID 258631:1–Article ID 258631:8.
[25]
Ciambelli, P.; Sannino, D.; Palma, V.; Vaiano, V. Photocatalysed selective oxidation of cyclohexane to benzene on MoOx,/TiO2. Catal. Today 2005, 99, 143–149, doi:10.1016/j.cattod.2004.09.034.
[26]
Ciambelli, P.; Sannino, D.; Palma, V.; Vaiano, V. Cyclohexane photocatalytic oxidative dehydrogenation to benzene on sulfated titania supported MoOx. Stud. Surf. Sci. Catal. 2005, 155, 179–187, doi:10.1016/S0167-2991(05)80147-8.
[27]
Sannino, D.; Vaiano, V.; Ciambelli, P.; Eloy, P.; Gaigneaux, E.M. Avoiding the deactivation of sulfated MoOx/TiO2 catalysts in the photocatalytic cyclohexane oxidative dehydrogenation by a fluidized bed photoreactor. Appl. Catal.A 2011, 394, 71–78, doi:10.1016/j.apcata.2010.12.025.
Cheng, C.P.; Schrader, G.L. Characterization of supported molybdate catalysts during preparation using laser Raman spectroscopy. J.Catal. 1979, 60, 276–294, doi:10.1016/0021-9517(79)90149-0.
[31]
Bellamy, L.J.; Mayo, D.W. Infrared frequency effects of lone pair interactions with antibonding orbitals on adjacent atoms. J. Phys. Chem. 1976, 80, 1217–1220, doi:10.1021/j100552a020.
[32]
Bezrodna, T.; Puchkovska, G.; Shimanovska, V.; Chashechnikova, I.; Khalyavka, T.; Baran, J. Pyridine-TiO2 surface interaction as a probe for surface active centers analysis. Appl. Surface Sci. 2003, 214, 222–231, doi:10.1016/S0169-4332(03)00346-5.
[33]
Mul, G.; Wasylenko, W.; Hamdy, M.S.; Frei, H. Cyclohexene photo-oxidation over vanadia catalyst analyzed by time resolved ATR-FT-IR spectroscopy. Phys. Chem. Chem. Phys. 2008, 10, 3131–3137, doi:10.1039/b800314a.
[34]
Coates, J. Vibrational spectroscopy: Instrumentation for infrared and Raman spectroscopy. Appl. Spectrosc. Rev. 1998, 33, 267–425, doi:10.1080/05704929808002060.
[35]
Schuchardt, U.; Pereira, R.; Rufo, M. Iron(III) and copper(II) catalysed cyclohexane oxidation by molecular oxygen in the presence of tert-butyl hydroperoxide. J. Mol. Catal. A 1998, 135, 257–262, doi:10.1016/S1381-1169(97)00314-2.
[36]
Manner, W.L.; Girolami, G.S.; Nuzzo, R.G. Sequential dehydrogenation of unsaturated cyclic C5 and C5 hydrocarbons on Pt(111). J. Phys. Chem. B 1998, 102, 10295–10306, doi:10.1021/jp9830272.
[37]
Einaga, H.; Futamura, S.; Ibusuki, T. Heterogeneous photocatalytic oxidation of benzene, toluene, cyclohexene and cyclohexane in humidified air: Comparison of decomposition behavior on photoirradiated TiO2 catalyst. Appl. Catal. B 2002, 38, 215–225, doi:10.1016/S0926-3373(02)00056-5.
[38]
Ciambelli, P.; Fortuna, M.E.; Sannino, D.; Baldacci, A. The influence of sulfate on the catalytic properties of V2O5-TiO2 and WO3-TiO2 in the reduction of nitric oxide with ammonia. Catal. Today 1996, 29, 161–164, doi:10.1016/0920-5861(95)00255-3.
[39]
Amano, F.; Yamaguchi, T.; Tanaka, T. Photocatalytic oxidation of propylene with molecular oxygen over highly dispersed titanium, vanadium, and chromium oxides on silica. J. Phys. Chem. B 2006, 110, 281–288, doi:10.1021/jp0557868.
[40]
Taranto, J.; Frochot, D.; Pichat, P. Photocatalytic treatment of air: Comparison of various tiO2, coating methods, and supports using methanol or n-Octane as tst pollutant. Ind. Eng. Chem. Res. 2009, 48, 6229–6236, doi:10.1021/ie900014f.
[41]
Carneiro, J.T.; Moulijn, J.A.; Mul, G. Photocatalytic oxidation of cyclohexane by titanium dioxide: Catalyst deactivation and regeneration. J. Catal. 2010, 273, 199–210, doi:10.1016/j.jcat.2010.05.015.