This short review paper shows the significance of recombination of a photoexcited electron and a hole in conduction and valence bands, respectively, of a titania photocatalyst, since recombination has not yet been fully understood and has not been evaluated adequately during the past several decades of research on heterogeneous photocatalysis.
References
[1]
Ohtani, B. Preparing Articles on Photocatalysis—Beyond The Illusions, Misconceptions and Speculation. Chem. Lett. 2008, 37, 216–229, doi:10.1246/cl.2008.216.
[2]
Ohtani, B. Photocatalysis A to Z—What We Know and What We Don’t Know. J. Photochem. Photobiol. C 2010, 11, 157–178, doi:10.1016/j.jphotochemrev.2011.02.001.
[3]
Murakami, N.; Abe, R.; Ohtani, B. In-situ observation of photocatalytic reaction by photoacoustic spectroscopy: Detection of heat of exothermic photocatalytic reaction. Chem. Phys. Lett. 2008, 416, 316–320, doi:10.1016/j.cplett.2007.12.014.
[4]
Colombo, D.P.; Roussel, K.A.; Saeh, J.; Skinner, D.E.; Cavaleri, J.J.; Bowman, R.M. Femtosecond Study of the Intensity Dependence of Electron–Hole Dynamics in TiO2 Nanoclusters. Chem. Phys. Lett. 1995, 232, 207–214, doi:10.1016/0009-2614(94)01343-T.
[5]
Skinner, D.E.; Colombo, D.P.; Cavaleri, J.J.; Bowman, R.M. Femtosecond Investigation of Electron Trapping in Semiconductor Nanoclusters. J. Phys. Chem. 1995, 99, 7853–7856, doi:10.1021/j100020a003.
[6]
Colombo, D.P.; Bowman, R.M. Femtosecond Diffuse-Reflectance Spectroscopy of TiO2 Powders. J. Phys. Chem. 1995, 99, 11752–11756, doi:10.1021/j100030a020.
[7]
Colombo, D.P.; Bowman, R.M. Does Interfacial Charge Transfer Compete with Charge Carrier Recombination? A Femtosecond Diffuse Reflectance Investigation of TiO2 Nanoparticles. J. Phys. Chem. 1996, 100, 18445–18449, doi:10.1021/jp9610628.
[8]
Ohtani, B.; Kominami, H.; Bowman, R.M.; Colombo, P., Jr.; Noguchi, H.; Uosaki, K. Femtosecond Diffuse Reflectance Spectroscopy of Aqueous Titanium(IV) Oxide Suspension: Correlation of Electron-Hole Recombination Kinetics with Photocatalytic Activity. Chem. Lett. 1998, 27, 579–580.
[9]
Katoh, R.; Furube, A.; Yamanaka, K.-I.; Morikawa, T. Transient absorption spectra of nanocrystalline TiO2 films at high excitation density. J. Phys. Chem. Lett. 2010, 1, 3261–3265, doi:10.1021/jz1011548.
[10]
Ohtani, B. Revisiting the Fundamental Physical Chemistry in Heterogeneous Photocatalysis: Its Thermodynamics and Kinetics. Phys. Chem. Chem. Phys 2013. submitted for publication.
[11]
Bard, A.J. Design of Semiconductor Photo-Electrochemical Systems for Solar-Energy Conversion. J. Phys. Chem. 1982, 86, 172–177, doi:10.1021/j100391a008.
[12]
Thermal energy of an electron at temperature T is kT/q, where k and q are Boltzmann constant (1.380 × 10?23 J K?1) and elementary charge (1.6 × 10?19 C) and calculated to be 0.026 eV (= 26 meV) at 300 K.
[13]
B?ttger, H.; Bryksin, V.V. Hopping Conductivity in Ordered and Disordered Solids (I). Phys. Stat. Solid B 1976, 78, 9–56, doi:10.1002/pssb.2220780102.
[14]
Ikeda, S.; Sugiyama, N.; Murakami, S.-Y.; Kominami, H.; Kera, Y.; Noguchi, H.; Uosaki, K.; Torimoto, T.; Ohtani, B. Quantitative Analysis of Defective Sites in Titanium(IV) Oxide Photocatalyst Powders. Phys. Chem. Chem. Phys. 2003, 5, 778–783, doi:10.1039/b206594k.
[15]
Rothenberger, G.; Moser, J.; Gr?tzel, M.; Serpone, N.; Sharma, D.K. Charge carrier trapping and recombination dynamics in small semiconductor particles. J. Am. Chem. Soc. 1985, 107, 8054–8059, doi:10.1021/ja00312a043.
[16]
Bahnemann, D.W.; Hilgendorff, M.; Memming, R. Charge Carrier Dynamics at TiO2 particles: Reactivity of Free and Trapped Holes. J. Phys. Chem. B 1997, 101, 4265–4275, doi:10.1021/jp9639915.
[17]
Furube, A.; Asahi, T.; Masuhara, H.; Yamashita, H.; Anpo, M. Direct observation of a picosecond charge separation process in photoexcited platinum-loaded TiO2 particles by femtosecond diffuse reflectance spectroscopy. Chem. Phys. Lett. 2001, 336, 424–430, doi:10.1016/S0009-2614(01)00128-2.
[18]
Tang, J.; Durrant, J.R.; Klug, D.R. Mechanism of Photocatalytic Water Splitting in TiO2. Reaction of Water with Photoholes, Importance of Charge Carrier Dynamics, and Evidence for Four-Hole Chemistry. J. Am. Chem. Soc. 2008, 130, 13885–13891, doi:10.1021/ja8034637.
[19]
Deskins, N.A.; Dupuis, M. Intrinsic Hole Migration Rates in TiO2 from Density Functional Theory. J. Phys. Chem. C 2009, 113, 346–358, doi:10.1021/jp802903c.
[20]
Zawadzki, P.; Laursen, A.B.; Jacobsen, K.W.; Dahl, S.; Rossmeisl, J. Oxidative trends of TiO2–hole trapping at anatase and rutile surfaces. Energy Environ. Sci. 2012, 5, 9866–9869, doi:10.1039/c2ee22721e.
[21]
Torimoto, T.; Aburakawa, Y.; Kawahara, Y.; Ikeda, S.; Ohtani, B. Light Intensity Dependence of the Action Spectra of Photocatalytic Reactions with Anatase Titanium(IV) Oxide. Chem. Phys. Lett. 2004, 392, 220–224, doi:10.1016/j.cplett.2004.05.077.
[22]
Torimoto, T.; Aburakawa, Y.; Kawahara, Y.; Ikeda, S.; Ohtani, B. Detailed Analysis of Light-intensity Dependence of Photocatalytic Reaction by Titania Particles. J. Photochem. Photobiol. A Chem. 2013. to be submitted for publication.
[23]
Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38, doi:10.1038/238037a0.
[24]
Fujishima, A.; Honda, K.; Kikuchi, S. Photosensitized electrolytic oxidation on semiconducting n-type TiO2 electrode. Kogyo Kagaku Zasshi 1969, 72, 108–113. (in Japanese), doi:10.1246/nikkashi1898.72.108.
[25]
Fleischauer, P.D.; Kan, H.K.; Shepherd, J.R. Quantum yields of silver ion reduction on titanium dioxide and zinc oxide single crystals. J. Am. Chem. Soc. 1972, 84, 283–285, doi:10.1021/ja00756a055.