全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Catalysts  2013 

Formic Acid Oxidation over Hierarchical Porous Carbon Containing PtPd Catalysts

DOI: 10.3390/catal3040902

Keywords: hierarchical porous carbon, PtPd catalysts, formic acid

Full-Text   Cite this paper   Add to My Lib

Abstract:

The use of high surface monolithic carbon as support for catalysts offers important advantage, such as elimination of the ohmic drop originated in the interparticle contact and improved mass transport by ad-hoc pore design. Moreover, the approach discussed here has the advantage that it allows the synthesis of materials having a multimodal porous size distribution, with each pore size contributing to the desired properties. On the other hand, the monolithic nature of the porous support also imposes new challenges for metal loading. In this work, the use of Hierarchical Porous Carbon (HPC) as support for PtPd nanoparticles was explored. Three hierarchical porous carbon samples (denoted as HPC-300, HPC-400 and HPC-500) with main pore size around 300, 400 and 500 nm respectively, are used as porous support. PtPd nanoparticles were loaded by impregnation and subsequent chemical reduction with NaBH 4. The resulting material was characterized by EDX, XRD and conventional electrochemical techniques. The catalytic activity toward formic acid and methanol electrooxidation was evaluated by electrochemical methods, and the results compared with commercial carbon supported PtPd. The Hierarchical Porous Carbon support discussed here seems to be promising for use in DFAFC anodes.

References

[1]  Jeong, K.-J.; Miesse, C.M.; Choi, J.-H.; Lee, J.; Han, J.; Yoon, S.P.; Nam, S.W.; Lim, T.-H.; Lee, T.G. Fuel crossover in direct formic acid fuel cells. J. Power Sources 2007, 168, 119–125, doi:10.1016/j.jpowsour.2007.02.062.
[2]  Ji, X.; Lee, K.T.; Holden, R.; Zhang, L.; Zhang, J.; Botton, G.A.; Couillard, M.; Nazar, L.F. Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes. Nat. Chem. 2010, 2, 286–293, doi:10.1038/nchem.553.
[3]  Yu, X.; Pickup, P.G. Recent advances in direct formic acid fuel cells (DFAFC). J. Power Sources 2008, 182, 124–132, doi:10.1016/j.jpowsour.2008.03.075.
[4]  Chan, K.-Y.; Ding, J.; Ren, J.; Cheng, S.; Tsang, K.Y. Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells. J. Mater. Chem. 2004, 14, 505–516.
[5]  García, G.; Florez-Monta?o, J.; Hernandez-Creus, A.; Pastor, E.; Planes, G.A. Methanol electrooxidation at mesoporous Pt and Pt-Ru electrodes: A comparative study with carbon supported materials. J. Power Sources 2011, 196, 2979–2986, doi:10.1016/j.jpowsour.2010.11.085.
[6]  Baena-Moncada, A.M.; Planes, G.A.; Moreno, M.S.; Barbero, C.A. A novel method to produce a hierarchical porous carbon as a conductive support of PtRu particles. Effect on CO and methanol electrooxidation. J. Power Sources 2013, 221, 42–48, doi:10.1016/j.jpowsour.2012.07.138.
[7]  Ryoo, R.; Joo, S.H.; Jun, S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J. Phys. Chem. B 1999, 103, 7743–7746, doi:10.1021/jp991673a.
[8]  Uhm, S.; Kwon, Y.; Chung, S.T.; Lee, J. Highly effective anode structure in a direct formic acid fuel cell. Electrochim. Acta 2008, 53, 5162–5168.
[9]  Rice, C.; Ha, S.; Masel, R.I.; Waszczuk, P.; Wieckowski, A.; Barnard, T. Direct formic acid fuel cells. J. Power Sources 2002, 111, 83–89.
[10]  Capon, A.; Parsons, R. The oxidation of formic acid on noble metal electrodes: II. A comparison of the behaviour of pure electrodes. J. Electroanal. Chem. 1973, 44, 239–254, doi:10.1016/S0022-0728(73)80250-5.
[11]  Grozovski, V.; Vidal-Iglesias, F.J.; Herrero, E.; Feliu, J.M. Adsorption of formate and its role as intermediate in formic acid oxidation on Platinum electrodes. ChemPhysChem 2011, 12, 1641–1644, doi:10.1002/cphc.201100257.
[12]  Beden, B.; Bewick, A.; Lamy, C. A comparative study of formic acid adsorption on a platinum electrode by both electrochemical and emirs techniques. J. Electroanal. Chem. 1983, 150, 505–511, doi:10.1016/S0022-0728(83)80230-7.
[13]  Arenz, M.; Stamenkovic, V.; Schmidt, T.J.; Wandelt, K.; Ross, P.N.; Markovic, N.M. The electro-oxidation of formic acid on Pt–Pd single crystal bimetallic surfaces. Phys. Chem. Chem. Phys. 2003, 5, 4242–4251, doi:10.1039/b306307k.
[14]  Feng, L.; Si, F.; Yao, S.; Cai, W.; Xing, W.; Liu, C. Effect of deposition sequences on electrocatalytic properties of PtPd/C catalysts for formic acid electrooxidation. Catal. Commun. 2011, 12, 772–775, doi:10.1016/j.catcom.2011.01.012.
[15]  Maiyalagan, T.; Nassr, A.B.A.; Alaje, T.O.; Bron, M.; Scott, K. Three-dimensional cubic ordered mesoporous carbon (CMK-8) as highly efficient stable Pd electro-catalyst support for formic acid oxidation. J. Power Sources 2012, 211, 147–153, doi:10.1016/j.jpowsour.2012.04.001.
[16]  Liu, B.; Li, H.Y.; Die, L.; Zhang, X.H.; Fan, Z.; Chen, J.H. Carbon nanotubes supported PtPd hollow nanospheres for formic acid electrooxidation. J. Power Sources 2009, 186, 62–66, doi:10.1016/j.jpowsour.2008.09.076.
[17]  Yu, X.; Pickup, P.G. Deactivation/reactivation of a Pd/C catalyst in a direct formic acid fuel cell (DFAFC): Use of array membrane electrode assemblies. J. Power Sources 2009, 187, 493–499, doi:10.1016/j.jpowsour.2008.11.014.
[18]  Wang, W.; Gu, B.; Liang, L.; Hamilton, W. Fabrication of two- and three-dimensional silica nanocolloidal particle Arrays. J. Phys. Chem. B 2003, 107, 3400–3404, doi:10.1021/jp0221800.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133