全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Catalysts  2013 

Carbon-Supported PtRuMo Electrocatalysts for Direct Alcohol Fuel Cells

DOI: 10.3390/catal3040811

Keywords: electrocatalysts, direct methanol fuel cells, DMFC, CO, methanol, ethanol, PtRuMo, ternary catalysts

Full-Text   Cite this paper   Add to My Lib

Abstract:

The review article discusses the current status and recent findings of our investigations on the synthesis and characterization of carbon-supported PtRuMo electrocatalysts for direct alcohol fuel cells. In particular, the effect of the carbon support and the composition on the structure, stability and the activity of the PtRuMo nanoparticles for the electrooxidation of CO, methanol and ethanol have been studied. Different physicochemical techniques have been employed for the analysis of the catalysts structures: X-ray analytical methods (XRD, XPS, TXRF), thermogravimetry (TGA) and transmission electron microscopy (TEM), as well as a number of electrochemical techniques like CO adsorption studies, current-time curves and cyclic voltammetry measurements. Furthermore, spectroscopic methods adapted to the electrochemical systems for in situ studies, such as Fourier transform infrared spectroscopy (FTIRS) and differential electrochemical mass spectrometry (DEMS), have been used to evaluate the oxidation process of CO, methanol and ethanol over the carbon-supported PtRuMo electrocatalysts.

References

[1]  Neergat, M.; Leveratto, D.; Stimming, U. Catalysts for direct methanol fuel cells. Fuel Cells 2002, 2, 25–30, doi:10.1002/1615-6854(20020815)2:1<25::AID-FUCE25>3.0.CO;2-4.
[2]  Demirci, U.B. Direct liquid-feed fuel cells: Thermodynamic and environmental concerns. J. Power Sources 2007, 169, 239–246, doi:10.1016/j.jpowsour.2007.03.050.
[3]  Zhao, X.; Yin, M.; Ma, L.; Liang, L.; Liu, C.; Liao, J.; Lu, T.; Xing, W. Recent advances in catalysts for direct methanol fuel cells. Energy Environ. Sci. 2011, 4, 2736–2753, doi:10.1039/c1ee01307f.
[4]  Antolini, E. Catalysts for direct ethanol fuel cells. J. Power Sources 2007, 170, 1–12, doi:10.1016/j.jpowsour.2007.04.009.
[5]  Petrii, O. PtRu electrocatalysts for fuel cells: A representative review. J. Solid State Electrochem. 2008, 12, 609–642, doi:10.1007/s10008-007-0500-4.
[6]  De la Fuente, J.L.G.; Martínez-Huerta, M.V.; Rojas, S.; Hernández-Fernández, P.; Terreros, P.; Fierro, J.L.G.; Pe?a, M.A. Tailoring and structure of PtRu nanoparticles supported on functionalized carbon for DMFC applications: New evidence of the hydrous ruthenium oxide phase. Appl. Catal. B 2009, 88, 505–514, doi:10.1016/j.apcatb.2008.10.016.
[7]  Alegre, C.; Calvillo, L.; Moliner, R.; González-Expósito, J.A.; Guill-Villafuerte, O.; Martínez-Huerta, M.V.; Pastor, E.; Lázaro, M.J. Pt and PtRu electrocatalysts supported on carbon xerogels for direct methanol fuel cells. J. Power Sources 2011, 196, 4226–4235, doi:10.1016/j.jpowsour.2010.10.049.
[8]  García, G.; Florez-Monta?o, J.; Hernandez-Creus, A.; Pastor, E.; Planes, G.A. Methanol electrooxidation at mesoporous Pt and Pt-Ru electrodes: A comparative study with carbon supported materials. J. Power Sources 2011, 196, 2979–2986, doi:10.1016/j.jpowsour.2010.11.085.
[9]  Maiyalagan, T.; Alaje, T.O.; Scott, K. Highly Stable Pt-Ru Nanoparticles Supported on Three-Dimensional Cubic Ordered Mesoporous Carbon (Pt-Ru/CMK-8) as Promising Electrocatalysts for Methanol Oxidation. J. Phys. Chem. C 2011, 116, 2630–2638, doi:10.1021/jp210266n.
[10]  De la Fuente, J.L.G.; Martínez-Huerta, M.V.; Rojas, S.; Terreros, P.; Fierro, J.L.G.; Pe?a, M.A. Enhanced methanol electrooxidation activity of PtRu nanoparticles supported on H2O2-functionalized carbon black. Carbon 2005, 43, 3002–3005, doi:10.1016/j.carbon.2005.06.015.
[11]  Antolini, E.; Gonzalez, E.R. A simple model to assess the contribution of alloyed and non-alloyed platinum and tin to the ethanol oxidation reaction on Pt-Sn/C catalysts: Application to direct ethanol fuel cell performance. Electrochim. Acta 2010, 55, 6485–6490, doi:10.1016/j.electacta.2010.06.035.
[12]  Sieben, J.M.; Duarte, M.M.E. Nanostructured Pt and PtSn catalysts supported on oxidized carbon nanotubes for ethanol and ethylene glycol electro-oxidation. Int. J. Hydrogen Energy 2011, 36, 3313–3321, doi:10.1016/j.ijhydene.2010.12.020.
[13]  Jiang, L.; Colmenares, L.; Jusys, Z.; Sun, G.Q.; Behm, R.J. Ethanol electrooxidation on novel carbon supported Pt/SnOx/C catalysts with varied Pt:Sn ratio. Electrochim. Acta 2007, 53, 377–389, doi:10.1016/j.electacta.2007.01.047.
[14]  Bambagioni, V.; Bianchini, C.; Marchionni, A.; Filippi, J.; Vizza, F.; Teddy, J.; Serp, P.; Zhiani, M. Pd and Pt-Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol = methanol, ethanol, glycerol). J. Power Sources 2009, 190, 241–251, doi:10.1016/j.jpowsour.2009.01.044.
[15]  Chatterjee, M.; Chatterjee, A.; Ghosh, S.; Basumallick, I. Electro-oxidation of ethanol and ethylene glycol on carbon-supported nano-Pt and -PtRu catalyst in acid solution. Electrochim. Acta 2009, 54, 7299–7304, doi:10.1016/j.electacta.2009.07.054.
[16]  Wang, M.Y.; Chen, J.H.; Fan, Z.; Tang, H.; Deng, G.H.; He, D.L.; Kuang, Y.F. Ethanol electro-oxidation with Pt and Pt-Ru catalysts supported on carbon nanotubes. Carbon 2004, 42, 3251–3272, doi:10.1016/j.carbon.2004.06.040.
[17]  Koper, M.T.M.; Lukkien, J.J.; Jansen, A.P.J.; van Santen, R.A. Lattice gas model for CO electrooxidation on Pt-Ru bimetallic surfaces. J. Phys. Chem. B 1999, 103, 5522–5529.
[18]  Watanabe, M.; Motoo, S. Electrocatalysis by ad-atoms: Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. J. Electroanal. Chem. 1975, 60, 267–273, doi:10.1016/S0022-0728(75)80261-0.
[19]  Iwasita, T. Electrocatalysis of methanol oxidation. Electrochim. Acta 2002, 47, 3663–3674, doi:10.1016/S0013-4686(02)00336-5.
[20]  Rabis, A.; Rodriguez, P.; Schmidt, T.J. Electrocatalysis for Polymer Electrolyte Fuel Cells: Recent Achievements and Future Challenges. ACS Catal. 2012, 2, 864–890, doi:10.1021/cs3000864.
[21]  Antolini, E. Carbon supports for low temperature fuel cell catalysts. Appl. Catal. B 2009, 88, 1–24, doi:10.1016/j.apcata.2009.05.045.
[22]  Fei, Y.; Cao, X.; Yu, L.; Chen, S.; Lin, W. Synthesis and Catalytic Performance of PtRuMo Nanoparticles Supported on Graphene-Carbon Nanotubes Nanocomposites for Methanol Electro-Oxidation. Int. J. Electrochem. Sci. 2012, 7, 1251–1265.
[23]  Kakati, N.; Maiti, J.; Oh, J.Y.; Yoon, Y.S. Study of methanol oxidation of hydrothermally synthesized PtRuMo on multi wall carbon nanotubes. Appl. Surf. Sci. 2011, 257, 8433–8437, doi:10.1016/j.apsusc.2011.04.125.
[24]  Chen, S.; Ye, F.; Lin, W. Effect of operating conditions on the performance of a direct methanol fuel cell with PtRuMo/CNTs as anode catalyst. Int. J. Hydrogen Energy 2010, 35, 8225–8233, doi:10.1016/j.ijhydene.2009.12.085.
[25]  Lee, K.R.; Jeon, M.K.; Woo, S.I. Composition optimization of PtRuM/C (M = Fe and Mo) catalysts for methanol electro-oxidation via combinatorial method. Appl. Catal. B 2009, 91, 428–433, doi:10.1016/j.apcatb.2009.06.011.
[26]  Wang, Z.B.; Zuo, P.J.; Yin, G.P. Investigations of compositions and performance of PtRuMo/C ternary catalysts for methanol electrooxidation. Fuel Cells 2009, 2, 106–113, doi:10.1002/fuce.200800096.
[27]  Morante-Catacora, T.Y.; Ishikawa, Y.; Cabrera, C.R. Sequential electrodeposition of Mo at Pt and PtRu methanol oxidation catalyst particles on HOPG surfaces. J. Electroanal. Chem. 2008, 621, 103–112, doi:10.1016/j.jelechem.2008.04.029.
[28]  Pasupathi, S.; Tricoli, V. Effect of third metal on the electrocatalytic activity of PtRu/Vulcan for methanol electro-oxidation. J. Solid State Electrochem. 2008, 12, 1093–1100, doi:10.1007/s10008-007-0441-y.
[29]  Bauer, A.; Gyenge, E.L.; Oloman, C.W. Direct methanol fuel cell with extended reaction zone anode: PtRu and PtRuMo supported on graphite felt. J. Power Sources 2007, 167, 281–287, doi:10.1016/j.jpowsour.2007.02.053.
[30]  Wang, Z.B.; Yin, G.P.; Lin, Y.G. Synthesis and characterization of PtRuMo/C nanoparticle electrocatalyst for direct ethanol fuel cell. J. Power Sources 2007, 170, 242–250, doi:10.1016/j.jpowsour.2007.03.078.
[31]  Benker, N.; Roth, C.; Mazurek, M.; Fuess, H. Synthesis and characterization of ternary Pt/Ru/Mo catalysts for the anode of the PEM fuel cell. J. New Mater. Electrochem. Syst. 2006, 9, 121–126.
[32]  Hou, Z.; Yi, B.; Yu, H.; Lin, Z.; Zhang, H. CO tolerance electrocatalyst of PtRu-HxMeO3/C (Me = W, Mo) made by composite support method. J. Power Sources 2003, 123, 116–125, doi:10.1016/S0378-7753(03)00515-9.
[33]  Oliveira Neto, A.; Franco, E.G.; Arico, E.; Linardi, M.; Gonzalez, E.R. Electro-oxidation of methanol and ethanol on Pt-Ru/C and Pt-Ru-Mo/C electrocatalysts prepared by B?nnemann's method. J. Eur. Ceramic Soc. 2003, 23, 2987–2992, doi:10.1016/S0955-2219(03)00310-8.
[34]  Pinheiro, A.L.N.; Oliveira Neto, A.; de Souza, E.C.; Perez, J.; Paganin, V.A.; Ticianelli, E.; Gonzalez, E.R. Electrocatalysis on noble metal and noble metal alloys dispersed on high surface area carbon. J. New Mater. Electrochem. Syst. 2003, 6, 1–8.
[35]  Franco, E.G.; Neto, A.O.; Linardi, M.; Arico, E. Synthesis of electrocatalysts by the Bonnemann method for the oxidation of methanol and the mixture H2/CO in a proton exchange membrane fuel cell. J. Braz. Chem. Soc. 2002, 13, 516–521, doi:10.1590/S0103-50532002000400017.
[36]  Papageorgopoulos, D.C.; Keijzer, M.; de Bruijn, F.A. The inclusion of Mo, Nb and Ta in Pt and PtRu carbon supported 3electrocatalysts in the quest for improved CO tolerant PEMFC anodes. Electrochim. Acta 2002, 48, 197–204, doi:10.1016/S0013-4686(02)00602-3.
[37]  G?tz, M.; Wendt, H. Bynary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas. Electrochim. Acta 1998, 43, 3637–3644, doi:10.1016/S0013-4686(98)00121-2.
[38]  Anderson, A.B.; Grantscharova, E.; Seong, S. Systematic Theoretical Study of Alloys of Platinum for Enhanced Methanol Fuel Cell Performance. J. Electrochem. Soc. 1996, 143, 2075–2082, doi:10.1149/1.1836952.
[39]  Ji, Z.; Jalbout, A.F.; Li, J.Q. Adsorption and diffusion of OH on Mo modified Pt(111) surface: First-principles theory. Solid State Commun. 2007, 142, 148–153, doi:10.1016/j.ssc.2007.02.004.
[40]  Horkans, J.; Shafer, M.W. Effect of orientation, composition and electronic factors in the reduction of O2 on single crystal electrodes of the conducting oxides of molybdenum and tungsten. J. Electrochem. Soc. 1977, 124, 1196–1202, doi:10.1149/1.2133527.
[41]  Martínez-Huerta, M.V.; Rodríguez, J.L.; Tsiouvaras, N.; Pe?a, M.A.; Fierro, J.L.G.; Pastor, E. Novel synthesis method of CO-tolerant PtRu-MoOx nanoparticles: structural characteristics and performance for methanol electrooxidation. Chem. Mater. 2008, 20, 4249–4259, doi:10.1021/cm703047p.
[42]  Watanabe, M.; Uchida, M.; Motoo, S. Preparation of highly dispersed Pt + Ru clusters and the activity for the electrooxidation of methanol. J. Electroanal. Chem. 1987, 229, 395–406, doi:10.1016/0022-0728(87)85156-2.
[43]  Tsiouvaras, N.; Martínez-Huerta, M.V.; Moliner, R.; Lázaro, M.J.; Rodríguez, J.L.; Pastor, E.; Pe?a, M.A.; Fierro, J.L.G. CO tolerant PtRu-MoOx nanoparticles supported on carbon nanofibers for direct methanol fuel cells. J. Power Sources 2009, 186, 299–304, doi:10.1016/j.jpowsour.2008.10.026.
[44]  Tsiouvaras, N.; Pe?a, M.A.; Fierro, J.L.G.; Pastor, E.; Martínez-Huerta, M.V. The effect of the Mo precursor on the nanostructure and activity of PtRuMo electrocatalysts for Proton Exchange Membrane Fuel Cells. Catal. Today 2010, 158, 12–21, doi:10.1016/j.cattod.2010.05.004.
[45]  Tsiouvaras, N.; Martínez-Huerta, M.V.; Paschos, O.; Stimming, U.; Fierro, J.L.G.; Pe?a, M.A. PtRuMo/C catalysts for direct methanol fuel cells: Effect of the pretreatment on the structural characteristics and methanol electrooxidation. Int. J. Hydrogen Energy 2010, 35, 11478–11488, doi:10.1016/j.ijhydene.2010.06.053.
[46]  Martínez-Huerta, M.V.; Tsiouvaras, N.; Pe?a, M.A.; Fierro, J.L.G.; Rodriguez, J.L.; Pastor, E. Electrochemical activation of nanostructured carbon-supported PtRuMo electrocatalyst for methanol oxidation. Electrochim. Acta 2010, 55, 7634–7642.
[47]  García, G.; Tsiouvaras, N.; Pastor, E.; Pe?a, M.A.; Fierro, J.L.G.; Martínez-Huerta, M.V. Ethanol oxidation on PtRuMo/C catalysts: In situ FTIR spectroscopy and DEMS studies. Int. J. Hydrogen Energy 2012, 37, 7131–7140, doi:10.1016/j.ijhydene.2011.11.031.
[48]  Alcaide, F.; álvarez, G.; Tsiouvaras, N.; Pe?a, M.A.; Fierro, J.L.; Martínez-Huerta, M.V. Electrooxidation of H2/CO on carbon-supported PtRu-MoOx nanoparticles for polymer electrolyte fuel cells. Int. J. Hydrogen Energy 2011, 36, 14590–14598.
[49]  Grgur, B.N.; Zhuang, G.; Markovic, N.M.; Ross, J.P.N. Electrooxidation of H2/CO Mixtures on a Well-Characterized Pt75Mo25 Alloy Surface. J. Phys. Chem. B 1997, 101, 3910–3913.
[50]  Grgur, B.N.; Markovic, N.M.; Ross, P.N., Jr. Electrooxidation of H2, CO and H2/CO mixtures on a well-characterized Pt70Mo30 bulk alloy electrode. J. Phys. Chem. B 1998, 102, 2494–2501, doi:10.1021/jp972692s.
[51]  Holleman, A.F.; Wiberg, E. Inorganic Chemistry; Wiberg, N., Ed.; Academic Press: San Diego, CA, USA, 2001; pp. 1382–1402.
[52]  Briggs, D.; Seah, M.P. Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy; Wiley: New York, NY, USA, 1990.
[53]  Hobbs, B.S.; Tseung, A.C.C. High performance, platinum activated tungsten oxide fuel cell electrodes. Nature 1969, 222, 556–558, doi:10.1038/222556a0.
[54]  Bond, G.C.; Tripathi, J.B.P. Studies of Hydrogen Spillover. J. Chem. Soc. Faraday Trans. 1 1976, 72, 933–941, doi:10.1039/f19767200933.
[55]  Grgur, B.N.; Markovic, N.M.; Ross, P.N. The electrooxidation of H2 and H2/CO mixtures on carbon supported PtxMoy alloy catalysts. J. Electrochem. Soc. 1999, 146, 1613–1619, doi:10.1149/1.1391815.
[56]  Mukerjee, S.; Urian, R.C. Bifunctionality in Pt alloy nanocluster electrocatalysts for enhanced methanol oxidation and CO tolerance in PEM fuel cells: Electrochemical and in situ synchrotron spectroscopy. Electrochim. Acta 2002, 47, 3219–3231, doi:10.1016/S0013-4686(02)00242-6.
[57]  Lebedeva, N.P.; Janssen, G.J.M. On the preparation and stability of bimetallic PtMo/C anodes for protno-exchange membrane fuel cells. Electrochim. Acta 2005, 51, 29–40, doi:10.1016/j.electacta.2005.04.034.
[58]  Serp, P.; Corrias, M.; Kalck, P. Carbon nanotubes and nanofibers in catalysis. Appl. Catalysis A 2003, 253, 337–358, doi:10.1016/S0926-860X(03)00549-0.
[59]  García, G.; Koper, M.T.M. Carbon Monoxide Oxidation on Pt Single Crystal Electrodes: Understanding the Catalysis for Low Temperature Fuel Cells. Chemphyschem 2011, 12, 2064–2072, doi:10.1002/cphc.201100247.
[60]  Gilman, S. The Mechanism of Electrochemical Oxidation of Carbon Monoxide and Methanol on Platinum. II. The Reactant-Pair Mechanism for Electrochemical Oxidation of Carbon Monoxide and Methanol 1. J. Phys. Chem. 1964, 68, 70–80, doi:10.1021/j100783a013.
[61]  Arico, A.S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; Schalkwijk, W.V. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377, doi:10.1038/nmat1368.
[62]  Hamnett, A. Interfacial Electrochemistry; Theory, Experiment and Applications; Wieckowski, A., Ed.; Marcell Dekker: New York, NY, USA, 1999; p. 843.
[63]  Sun, S.G.; Clavilier, J. Electrochemical study on the poisoning intermediate formed from methanol dissociation at low index and stepped platinum surfaces. J. Electroanal. Chem. 1987, 236, 95–112, doi:10.1016/0022-0728(87)88021-X.
[64]  Cuesta, A. At Least Three Contiguous Atoms Are Necessary for CO Formation during Methanol Electrooxidation on Platinum. J. Am. Chem. Soc. 2006, 128, 13332–13333, doi:10.1021/ja0644172.
[65]  Camara, G.A.; Iwasita, T. Parallel pathways of ethanol oxidation: The effect of ethanol concentration. J. Electroanal. Chem. 2005, 578, 315–321, doi:10.1016/j.jelechem.2005.01.013.
[66]  Lamy, C.; Lima, A.; LeRhun, V.; Delime, F.; Coutanceau, C.; Leger, J.M. Recent advances in the development of direct alcohol fuel cells (DAFC). J. Power Sources 2002, 105, 283–296, doi:10.1016/S0378-7753(01)00954-5.
[67]  Colmenares, L.; Wang, H.; Jusys, Z.; Jiang, L.; Yan, S.; Sun, G.Q.; Behm, R.J. Ethanol oxidation on novel, carbon supported Pt alloy catalysts—Model studies under defined diffusion conditions. Electrochim. Acta 2006, 52, 221–233, doi:10.1016/j.electacta.2006.04.063.
[68]  Neurock, M. Advances in Electrocatalysis, Materials, Diagnostics and Durability. In First-Principles Modeling for the Electro-Oxidation of Small Molecules—Handbook of Fuel Cells—Fundamentals, Technology and Applications; Vielstich, W., Lamm, A., Gasteiger, H.A., Eds.; Wiley: West Sussex, UK, 2009; Volume 5.
[69]  Zhu, J.; Cheng, F.; Tao, Z.; Chen, J. Electrocatalytic Methanol Oxidation of Pt0.5Ru0.5-xSnx/C (x = 0–0.5). J. Phys. Chem. C 2008, 112, 6337–6345, doi:10.1021/jp8000543.
[70]  Zhou, W.; Zhou, Z.; Song, S.; Li, W.; Sun, G.; Tsiakaras, P.; Xin, Q. Pt based anode catalysts for direct ethanol fuel cells. Appl. Catal. B 2003, 46, 273–285, doi:10.1016/S0926-3373(03)00218-2.
[71]  Ioroi, T.; Fujiwara, N.; Siroma, Z.; Yasuda, K.; Miyazaki, Y. Platinum and molybdenum oxide deposited carbon electrocatalyst for oxidation of hydrogen containing carbon monoxide. Electrochem. Commun. 2002, 4, 442–446, doi:10.1016/S1388-2481(02)00341-7.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133