全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Fetal Alcohol Spectrum Disorder (FASD) Associated Neural Defects: Complex Mechanisms and Potential Therapeutic Targets

DOI: 10.3390/brainsci3020964

Keywords: fetal alcohol syndrome, fetal alcohol spectrum disorder, ethanol, central nervous system, cranial neural crest cells, vitamin deficiency

Full-Text   Cite this paper   Add to My Lib

Abstract:

Fetal alcohol spectrum disorder (FASD), caused by prenatal alcohol exposure, can result in craniofacial dysmorphism, cognitive impairment, sensory and motor disabilities among other defects. FASD incidences are as high as 2% to 5 % children born in the US, and prevalence is higher in low socioeconomic populations. Despite various mechanisms being proposed to explain the etiology of FASD, the molecular targets of ethanol toxicity during development are unknown. Proposed mechanisms include cell death, cell signaling defects and gene expression changes. More recently, the involvement of several other molecular pathways was explored, including non-coding RNA, epigenetic changes and specific vitamin deficiencies. These various pathways may interact, producing a wide spectrum of consequences. Detailed understanding of these various pathways and their interactions will facilitate the therapeutic target identification, leading to new clinical intervention, which may reduce the incidence and severity of these highly prevalent preventable birth defects. This review discusses manifestations of alcohol exposure on the developing central nervous system, including the neural crest cells and sensory neural placodes, focusing on molecular neurodevelopmental pathways as possible therapeutic targets for prevention or protection.

References

[1]  May, P.A.; Gossage, J.P.; Kalberg, W.O.; Robinson, L.K.; Buckley, D.; Manning, M.; Hoyme, H.E. Prevalence and epidemiologic characteristics of FASD from various research methods with an emphasis on recent in-school studies. Dev. Disabil. Res. Rev. 2009, 15, 176–192, doi:10.1002/ddrr.68.
[2]  Moore, E.S.; Ward, R.E.; Jamison, P.L.; Morris, C.A.; Bader, P.I.; Hall, B.D. The subtle facial signs of prenatal exposure to alcohol: An anthropometric approach. J. Pediatr. 2001, 139, 215–219, doi:10.1067/mpd.2001.115313.
[3]  Moore, E.S.; Ward, R.E.; Wetherill, L.F.; Rogers, J.L.; Autti-Ramo, I.; Fagerlund, A.; Jacobson, S.W.; Robinson, L.K.; Hoyme, H.E.; Mattson, S.N.; Foroud, T. Unique facial features distinguish fetal alcohol syndrome patients and controls in diverse ethnic populations. Alcohol. Clin. Exp. Res. 2007, 31, 1707–1713, doi:10.1111/j.1530-0277.2007.00472.x.
[4]  Webster, W.S.; Walsh, D.A.; Lipson, A.H.; McEwen, S.E. Teratogenesis after acute alcohol exposure in inbred and out-bred mice. Neurobehav. Toxicol. 1980, 2, 227–234.
[5]  Sulik, K.K. Genesis of alcohol-induced craniofacial dysmorphism. Exp. Biol. Med. (Maywood) 2005, 230, 366–375.
[6]  Sulik, K.K.; Cook, C.S.; Webster, W.S. Teratogens and craniofacial malformations: Relationships to cell death. Development 1988, 103, 213–231.
[7]  Sulik, K.K.; Johnston, M.C.; Webb, M.A. Fetal alcohol syndrome: Embryogenesis in a mouse model. Science 1981, 214, 936–938.
[8]  Blader, P.; Strahle, U. Ethanol impairs migration of the prechordal plate in the zebrafish embryo. Dev. Biol. 1998, 201, 185–201, doi:10.1006/dbio.1998.8995.
[9]  Lipinski, R.J.; Hammond, P.; O’Leary-Moore, S.K.; Ament, J.J.; Pecevich, S.J.; Jiang, Y.; Budin, F.; Parnell, S.E.; Suttie, M.; Godin, E.A.; et al. Ethanol-induced face-brain dysmorphology patterns are correlative and exposure-stage dependent. PLoS One 2012, 7, e43067.
[10]  Anthony, B.; Vinci-Booher, S.; Wetherill, L.; Ward, R.; Goodlett, C.; Zhou, F.C. Alcohol-induced facial dysmorphology in C57BL/6 mouse models of fetal alcohol spectrum disorder. Alcohol 2010, 44, 659–671, doi:10.1016/j.alcohol.2010.04.002.
[11]  Nakatsuji, N. Craniofacial malformation in Xenopus laevis tadpoles caused by the exposure of early embryos to ethanol. Teratology 1983, 28, 299–305, doi:10.1002/tera.1420280220.
[12]  Pennington, S.N. Alcohol metabolism and fetal hypoplasia in chick brain. Alcohol 1988, 5, 91–94, doi:10.1016/0741-8329(88)90001-8.
[13]  Roebuck, T.M.; Mattson, S.N.; Riley, E.P. A review of the neuroanatomical findings in children with fetal alcohol syndrome or prenatal exposure to alcohol. Alcohol. Clin. Exp. Res. 1998, 22, 339–344, doi:10.1111/j.1530-0277.1998.tb03658.x.
[14]  Coulter, C.L.; Leech, R.W.; Schaefer, G.B.; Scheithauer, B.W.; Brumback, R.A. Midline cerebral dysgenesis, dysfunction of the hypothalamic-pituitary axis, and fetal alcohol effects. Arch. Neurol. 1993, 50, 771–775.
[15]  Lebel, C.; Roussotte, F.; Sowell, E.R. Imaging the impact of prenatal alcohol exposure on the structure of the developing human brain. Neuropsychol. Rev. 2011, 21, 102–118, doi:10.1007/s11065-011-9163-0.
[16]  Zhou, D.; Lebel, C.; Lepage, C.; Rasmussen, C.; Evans, A.; Wyper, K.; Pei, J.; Andrew, G.; Massey, A.; Massey, D.; Beaulieu, C. Developmental cortical thinning in fetal alcohol spectrum disorders. NeuroImage 2011, 58, 16–25, doi:10.1016/j.neuroimage.2011.06.026.
[17]  Yang, Y.; Roussotte, F.; Kan, E.; Sulik, K.K.; Mattson, S.N.; Riley, E.P.; Jones, K.L.; Adnams, C.M.; May, P.A.; O’Connor, M.J.; et al. Abnormal cortical thickness alterations in fetal alcohol spectrum disorders and their relationships with facial dysmorphology. Cereb. Cortex 2012, 22, 1170–1179, doi:10.1093/cercor/bhr193.
[18]  Yang, Y.; Phillips, O.R.; Kan, E.; Sulik, K.K.; Mattson, S.N.; Riley, E.P.; Jones, K.L.; Adnams, C.M.; May, P.A.; O’Connor, M.J.; et al. Callosal thickness reductions relate to facial dysmorphology in fetal alcohol spectrum disorders. Alcohol. Clin. Exp. Res. 2012, 36, 798–806, doi:10.1111/j.1530-0277.2011.01679.x.
[19]  O’Leary-Moore, S.K.; Parnell, S.E.; Godin, E.A.; Dehart, D.B.; Ament, J.J.; Khan, A.A.; Johnson, G.A.; Styner, M.A.; Sulik, K.K. Magnetic resonance microscopy-based analyses of the brains of normal and ethanol-exposed fetal mice. Birth Defects Res. A Clin. Mol. Teratol. 2010, 88, 953–964, doi:10.1002/bdra.20719.
[20]  O’Leary-Moore, S.K.; Parnell, S.E.; Lipinski, R.J.; Sulik, K.K. Magnetic resonance-based imaging in animal models of fetal alcohol spectrum disorder. Neuropsychol. Rev. 2011, 21, 167–185, doi:10.1007/s11065-011-9164-z.
[21]  Parnell, S.E.; O’Leary-Moore, S.K.; Godin, E.A.; Dehart, D.B.; Johnson, B.W.; Allan Johnson, G.; Styner, M.A.; Sulik, K.K. Magnetic resonance microscopy defines ethanol-induced brain abnormalities in prenatal mice: Effects of acute insult on gestational day 8. Alcohol. Clin. Exp. Res. 2009, 33, 1001–1011, doi:10.1111/j.1530-0277.2009.00921.x.
[22]  Godin, E.A.; O’Leary-Moore, S.K.; Khan, A.A.; Parnell, S.E.; Ament, J.J.; Dehart, D.B.; Johnson, B.W.; Allan Johnson, G.; Styner, M.A.; Sulik, K.K. Magnetic resonance microscopy defines ethanol-induced brain abnormalities in prenatal mice: Effects of acute insult on gestational day 7. Alcohol. Clin. Exp. Res. 2010, 34, 98–111, doi:10.1111/j.1530-0277.2009.01071.x.
[23]  Pierce, D.R.; Williams, D.K.; Light, K.E. Purkinje cell vulnerability to developmental ethanol exposure in the rat cerebellum. Alcohol. Clin. Exp. Res. 1999, 23, 1650–1659, doi:10.1111/j.1530-0277.1999.tb04057.x.
[24]  Ramadoss, J.; Lunde, E.R.; Chen, W.J.; West, J.R.; Cudd, T.A. Temporal vulnerability of fetal cerebellar Purkinje cells to chronic binge alcohol exposure: Ovine model. Alcohol. Clin. Exp. Res. 2007, 31, 1738–1745, doi:10.1111/j.1530-0277.2007.00477.x.
[25]  Ramadoss, J.; Lunde, E.R.; Pina, K.B.; Chen, W.J.; Cudd, T.A. All three trimester binge alcohol exposure causes fetal cerebellar purkinje cell loss in the presence of maternal hypercapnea, acidemia, and normoxemia: Ovine model. Alcohol. Clin. Exp. Res. 2007, 31, 1252–1258, doi:10.1111/j.1530-0277.2007.00422.x.
[26]  West, J.R.; Goodlett, C.R.; Bonthius, D.J.; Hamre, K.M.; Marcussen, B.L. Cell population depletion associated with fetal alcohol brain damage: Mechanisms of BAC-dependent cell loss. Alcohol. Clin. Exp. Res. 1990, 14, 813–818, doi:10.1111/j.1530-0277.1990.tb01820.x.
[27]  Olney, J.W. Fetal alcohol syndrome at the cellular level. Addict. Biol. 2004, 9, 137–149, doi:10.1080/13556210410001717006.
[28]  Sarmah, S.; Muralidharan, P.; Curtis, C.L.; McClintick, J.N.; Buente, B.B.; Holdgrafer, D.J.; Ogbeifun, O.; Olorungbounmi, O.C.; Patino, L.; Lucas, R.; et al. Ethanol exposure disrupts extraembryonic microtubule cytoskeleton and embryonic blastomere cell adhesion, producing epiboly and gastrulation defects. 2013. submitted for publication.
[29]  Church, M.W. Chronic in utero alcohol exposure affects auditory function in rats and in humans. Alcohol 1987, 4, 231–239, doi:10.1016/0741-8329(87)90017-6.
[30]  Cone-Wesson, B. Prenatal alcohol and cocaine exposure: Influences on cognition, speech, language, and hearing. J. Commun. Disord. 2005, 38, 279–302, doi:10.1016/j.jcomdis.2005.02.004.
[31]  Kotch, L.E.; Sulik, K.K. Patterns of ethanol-induced cell death in the developing nervous system of mice; neural fold states through the time of anterior neural tube closure. Int. J. Dev. Neurosci. 1992, 10, 273–279, doi:10.1016/0736-5748(92)90016-S.
[32]  Liang, Y.; Wang, Z.M.; Qu, W.D. Evaluation of embryonic alcoholism from auditory event-related potential in fetal rats. Chin. Med. J. (Engl.) 2004, 117, 1422–1424.
[33]  Eade, A.M.; Sheehe, P.R.; Youngentob, S.L. Ontogeny of the enhanced fetal-ethanol-induced behavioral and neurophysiologic olfactory response to ethanol odor. Alcohol. Clin. Exp. Res. 2010, 34, 206–213, doi:10.1111/j.1530-0277.2009.01083.x.
[34]  Youngentob, S.L.; Glendinning, J.I. Fetal ethanol exposure increases ethanol intake by making it smell and taste better. Proc. Natl. Acad. Sci. USA 2009, 106, 5359–5364, doi:10.1073/pnas.0809804106.
[35]  Bonthius, D.J.; Bonthius, N.E.; Napper, R.M.; West, J.R. Early postnatal alcohol exposure acutely and permanently reduces the number of granule cells and mitral cells in the rat olfactory bulb: A stereological study. J. Comp. Neurol. 1992, 324, 557–566, doi:10.1002/cne.903240408.
[36]  Akers, K.G.; Kushner, S.A.; Leslie, A.T.; Clarke, L.; van der Kooy, D.; Lerch, J.P.; Frankland, P.W. Fetal alcohol exposure leads to abnormal olfactory bulb development and impaired odor discrimination in adult mice. Mol. Brain 2011, 4, 29, doi:10.1186/1756-6606-4-29.
[37]  Middleton, F.A.; Carrierfenster, K.; Mooney, S.M.; Youngentob, S.L. Gestational ethanol exposure alters the behavioral response to ethanol odor and the expression of neurotransmission genes in the olfactory bulb of adolescent rats. Brain Res. 2009, 1252, 105–116, doi:10.1016/j.brainres.2008.11.023.
[38]  Stromland, K.; Pinazo-Duran, M.D. Ophthalmic involvement in the fetal alcohol syndrome: Clinical and animal model studies. Alcohol Alcohol. 2002, 37, 2–8, doi:10.1093/alcalc/37.1.2.
[39]  Hug, T.E.; Fitzgerald, K.M.; Cibis, G.W. Clinical and electroretinographic findings in fetal alcohol syndrome. J. AAPOS 2000, 4, 200–204, doi:10.1067/mpa.2000.105278.
[40]  Katz, L.M.; Fox, D.A. Prenatal ethanol exposure alters scotopic and photopic components of adult rat electroretinograms. Invest. Ophthalmol. Vis. Sci. 1991, 32, 2861–2872.
[41]  Matsui, J.I.; Egana, A.L.; Sponholtz, T.R.; Adolph, A.R.; Dowling, J.E. Effects of ethanol on photoreceptors and visual function in developing zebrafish. Invest. Ophthalmol. Vis. Sci. 2006, 47, 4589–4597, doi:10.1167/iovs.05-0971.
[42]  Bilotta, J.; Saszik, S.; Givin, C.M.; Hardesty, H.R.; Sutherland, S.E. Effects of embryonic exposure to ethanol on zebrafish visual function. Neurotoxicol. Teratol. 2002, 24, 759–766, doi:10.1016/S0892-0362(02)00319-7.
[43]  Arenzana, F.J.; Carvan, M.J., III; Aijon, J.; Sanchez-Gonzalez, R.; Arevalo, R.; Porteros, A. Teratogenic effects of ethanol exposure on zebrafish visual system development. Neurotoxicol. Teratol. 2006, 28, 342–348.
[44]  Yelin, R.; Kot, H.; Yelin, D.; Fainsod, A. Early molecular effects of ethanol during vertebrate embryogenesis. Differentiation 2007, 75, 393–403, doi:10.1111/j.1432-0436.2006.00147.x.
[45]  Kashyap, B.; Frederickson, L.C.; Stenkamp, D.L. Mechanisms for persistent microphthalmia following ethanol exposure during retinal neurogenesis in zebrafish embryos. Vis. Neurosci. 2007, 24, 409–421.
[46]  Deng, J.X.; Liu, X.; Zang, J.F.; Huang, H.E.; Xi, Y.; Zheng, H.; Yao, H.L.; Yu, D.M.; Deng, J.B. The effects of prenatal alcohol exposure on the developmental retina of mice. Alcohol Alcohol. 2012, 47, 380–385, doi:10.1093/alcalc/ags025.
[47]  Cartwright, M.M.; Smith, S.M. Stage-dependent effects of ethanol on cranial neural crest cell development: Partial basis for the phenotypic variations observed in fetal alcohol syndrome. Alcohol. Clin. Exp. Res. 1995, 19, 1454–1462, doi:10.1111/j.1530-0277.1995.tb01007.x.
[48]  Cartwright, M.M.; Tessmer, L.L.; Smith, S.M. Ethanol-induced neural crest apoptosis is coincident with their endogenous death, but is mechanistically distinct. Alcohol. Clin. Exp. Res. 1998, 22, 142–149, doi:10.1111/j.1530-0277.1998.tb03630.x.
[49]  Ahlgren, S.C.; Thakur, V.; Bronner-Fraser, M. Sonic hedgehog rescues cranial neural crest from cell death induced by ethanol exposure. Proc. Natl. Acad. Sci. USA 2002, 99, 10476–10481, doi:10.1073/pnas.162356199.
[50]  Smith, S.M. Alcohol-induced cell death in the embryo. Alcohol Health Res. World 1997, 21, 287–297.
[51]  Bronner-Fraser, M. Neural crest cell formation and migration in the developing embryo. FASEB J. 1994, 8, 699–706.
[52]  Knecht, A.K.; Bronner-Fraser, M. Induction of the neural crest: A multigene process. Nat. Rev. Genet. 2002, 3, 453–461, doi:10.1038/nrm832.
[53]  Lieber, C.S. Relationships between nutrition, alcohol use, and liver disease. Alcohol Res. Health 2003, 27, 220–231.
[54]  Durston, A.J.; Timmermans, J.P.; Hage, W.J.; Hendriks, H.F.; de Vries, N.J.; Heideveld, M.; Nieuwkoop, P.D. Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature 1989, 340, 140–144, doi:10.1038/340140a0.
[55]  Mezey, E.; Holt, P.R. The inhibitory effect of ethanol on retinol oxidation by human liver and cattle retina. Exp. Mol. Pathol. 1971, 15, 148–156, doi:10.1016/0014-4800(71)90095-5.
[56]  Duester, G. A hypothetical mechanism for fetal alcohol syndrome involving ethanol inhibition of retinoic acid synthesis at the alcohol dehydrogenase step. Alcohol. Clin. Exp. Res. 1991, 15, 568–572, doi:10.1111/j.1530-0277.1991.tb00562.x.
[57]  Keir, W.J. Inhibition of retinoic acid synthesis and its implications in fetal alcohol syndrome. Alcohol. Clin. Exp. Res. 1991, 15, 560–564, doi:10.1111/j.1530-0277.1991.tb00560.x.
[58]  Marrs, J.A.; Clendenon, S.G.; Ratcliffe, D.R.; Fielding, S.M.; Liu, Q.; Bosron, W.F. Zebrafish fetal alcohol syndrome model: Effects of ethanol are rescued by retinoic acid supplement. Alcohol 2010, 44, 707–715, doi:10.1016/j.alcohol.2009.03.004.
[59]  Kot-Leibovich, H.; Fainsod, A. Ethanol induces embryonic malformations by competing for retinaldehyde dehydrogenase activity during vertebrate gastrulation. Dis. Model. Mech. 2009, 2, 295–305, doi:10.1242/dmm.001420.
[60]  Yelin, R.; Schyr, R.B.; Kot, H.; Zins, S.; Frumkin, A.; Pillemer, G.; Fainsod, A. Ethanol exposure affects gene expression in the embryonic organizer and reduces retinoic acid levels. Dev. Biol. 2005, 279, 193–204, doi:10.1016/j.ydbio.2004.12.014.
[61]  Sarmah, S.; Marrs, J.A. Complex cardiac defects after ethanol exposure during discrete cardiogenic events in zebrafish: Prevention with folic acid. 2013. submitted for publication.
[62]  Kashyap, B.; Frey, R.A.; Stenkamp, D.L. Ethanol-induced microphthalmia is not mediated by changes in retinoic acid or sonic hedgehog signaling during retinal neurogenesis. Alcohol. Clin. Exp. Res. 2011, 35, 1644–1661.
[63]  Barak, A.J.; Beckenhauer, H.C.; Tuma, D.J.; Badakhsh, S. Effects of prolonged ethanol feeding on methionine metabolism in rat liver. Biochem. Cell Biol. 1987, 65, 230–233, doi:10.1139/o87-029.
[64]  Mason, J.B.; Choi, S.W. Effects of alcohol on folate metabolism: Implications for carcinogenesis. Alcohol 2005, 35, 235–241, doi:10.1016/j.alcohol.2005.03.012.
[65]  Barak, A.J.; Beckenhauer, H.C.; Junnila, M.; Tuma, D.J. Dietary betaine promotes generation of hepatic S-adenosylmethionine and protects the liver from ethanol-induced fatty infiltration. Alcohol. Clin. Exp. Res. 1993, 17, 552–555, doi:10.1111/j.1530-0277.1993.tb00798.x.
[66]  Beaudin, A.E.; Abarinov, E.V.; Noden, D.M.; Perry, C.A.; Chu, S.; Stabler, S.P.; Allen, R.H.; Stover, P.J. Shmt1 and de novo thymidylate biosynthesis underlie folate-responsive neural tube defects in mice. Am. J. Clin. Nutr. 2011, 93, 789–798, doi:10.3945/ajcn.110.002766.
[67]  Hutson, J.R.; Stade, B.; Lehotay, D.C.; Collier, C.P.; Kapur, B.M. Folic acid transport to the human fetus is decreased in pregnancies with chronic alcohol exposure. PLoS One 2012, 7, e38057.
[68]  Wang, L.L.; Zhang, Z.; Li, Q.; Yang, R.; Pei, X.; Xu, Y.; Wang, J.; Zhou, S.F.; Li, Y. Ethanol exposure induces differential microRNA and target gene expression and teratogenic effects which can be suppressed by folic acid supplementation. Hum. Reprod. 2009, 24, 562–579.
[69]  Serrano, M.; Han, M.; Brinez, P.; Linask, K.K. Fetal alcohol syndrome: Cardiac birth defects in mice and prevention with folate. Am. J. Obstet. Gynecol. 2010, 203, 75 e77–75 e15.
[70]  Fisher, M.C.; Zeisel, S.H.; Mar, M.H.; Sadler, T.W. Perturbations in choline metabolism cause neural tube defects in mouse embryos in vitro. FASEB J. 2002, 16, 619–621.
[71]  Thomas, J.D.; Abou, E.J.; Dominguez, H.D. Prenatal choline supplementation mitigates the adverse effects of prenatal alcohol exposure on development in rats. Neurotoxicol. Teratol. 2009, 31, 303–311, doi:10.1016/j.ntt.2009.07.002.
[72]  Thomas, J.D.; Idrus, N.M.; Monk, B.R.; Dominguez, H.D. Prenatal choline supplementation mitigates behavioral alterations associated with prenatal alcohol exposure in rats. Birth Defects Res. A Clin. Mol. Teratol. 2010, 88, 827–837, doi:10.1002/bdra.20713.
[73]  Monk, B.R.; Leslie, F.M.; Thomas, J.D. The effects of perinatal choline supplementation on hippocampal cholinergic development in rats exposed to alcohol during the brain growth spurt. Hippocampus 2012, 22, 1750–1757, doi:10.1002/hipo.22009.
[74]  Otero, N.K.; Thomas, J.D.; Saski, C.A.; Xia, X.; Kelly, S.J. Choline supplementation and DNA methylation in the hippocampus and prefrontal cortex of rats exposed to alcohol during development. Alcohol. Clin. Exp. Res. 2012, 36, 1701–1709, doi:10.1111/j.1530-0277.2012.01784.x.
[75]  Miller, R.R., Jr.; Olson, B.M.; Rorick, N.; Wittingen, A.L.; Bullock, M. Embryonic exposure to exogenous alpha- and gamma-tocopherol partially attenuates ethanol-induced changes in brain morphology and brain membrane fatty acid composition. Nutr. Neurosci. 2003, 6, 201–212, doi:10.1080/1028415031000119329.
[76]  Mitchell, J.J.; Paiva, M.; Heaton, M.B. The antioxidants vitamin E and beta-carotene protect against ethanol-induced neurotoxicity in embryonic rat hippocampal cultures. Alcohol 1999, 17, 163–168, doi:10.1016/S0741-8329(98)00051-2.
[77]  Siler-Marsiglio, K.I.; Shaw, G.; Heaton, M.B. Pycnogenol and vitamin E inhibit ethanol-induced apoptosis in rat cerebellar granule cells. J. Neurobiol. 2004, 59, 261–271, doi:10.1002/neu.10311.
[78]  Miller, G.W.; Labut, E.M.; Lebold, K.M.; Floeter, A.; Tanguay, R.L.; Traber, M.G. Zebrafish (Danio rerio) fed vitamin E-deficient diets produce embryos with increased morphologic abnormalities and mortality. J. Nutr. Biochem. 2012, 23, 478–486, doi:10.1016/j.jnutbio.2011.02.002.
[79]  Heaton, M.B.; Paiva, M.; Siler-Marsiglio, K. Ethanol influences on Bax translocation, mitochondrial membrane potential, and reactive oxygen species generation are modulated by vitamin E and brain-derived neurotrophic factor. Alcohol. Clin. Exp. Res. 2011, 35, 1122–1133, doi:10.1111/j.1530-0277.2011.01445.x.
[80]  Brocardo, P.S.; Gil-Mohapel, J.; Christie, B.R. The role of oxidative stress in fetal alcohol spectrum disorders. Brain Res. Rev. 2011, 67, 209–225.
[81]  Peng, Y.; Yang, P.H.; Guo, Y.; Ng, S.S.; Liu, J.; Fung, P.C.; Tay, D.; Ge, J.; He, M.L.; Kung, H.F.; Lin, M.C. Catalase and peroxiredoxin 5 protect Xenopus embryos against alcohol-induced ocular anomalies. Invest. Ophthalmol. Vis. Sci. 2004, 45, 23–29, doi:10.1167/iovs.03-0550.
[82]  Antonio, A.M.; Gillespie, R.A.; Druse-Manteuffel, M.J. Effects of lipoic acid on antiapoptotic genes in control and ethanol-treated fetal rhombencephalic neurons. Brain Res 2011, 1383, 13–21, doi:10.1016/j.brainres.2011.01.113.
[83]  Parnell, S.E.; Sulik, K.K.; Dehart, D.B.; Chen, S.Y. Reduction of ethanol-induced ocular abnormalities in mice through dietary administration of N-acetylcysteine. Alcohol 2010, 44, 699–705, doi:10.1016/j.alcohol.2010.05.006.
[84]  Peng, Y.; Kwok, K.H.; Yang, P.H.; Ng, S.S.; Liu, J.; Wong, O.G.; He, M.L.; Kung, H.F.; Lin, M.C. Ascorbic acid inhibits ROS production, NF-kappa B activation and prevents ethanol-induced growth retardation and microencephaly. Neuropharmacology 2005, 48, 426–434, doi:10.1016/j.neuropharm.2004.10.018.
[85]  Dong, J.; Sulik, K.K.; Chen, S.Y. Nrf2-mediated transcriptional induction of antioxidant response in mouse embryos exposed to ethanol in vivo: Implications for the prevention of fetal alcohol spectrum disorders. Antioxid. Redox Signal. 2008, 10, 2023–2033, doi:10.1089/ars.2007.2019.
[86]  Kane, C.J.; Phelan, K.D.; Han, L.; Smith, R.R.; Xie, J.; Douglas, J.C.; Drew, P.D. Protection of neurons and microglia against ethanol in a mouse model of fetal alcohol spectrum disorders by peroxisome proliferator-activated receptor-gamma agonists. Brain Behav. Immun. 2011, 25, S137–S145, doi:10.1016/j.bbi.2011.02.016.
[87]  Wang, G.; Bieberich, E. Prenatal alcohol exposure triggers ceramide-induced apoptosis in neural crest-derived tissues concurrent with defective cranial development. Cell Death Dis. 2010, 1, e46, doi:10.1038/cddis.2010.22.
[88]  Flentke, G.R.; Garic, A.; Amberger, E.; Hernandez, M.; Smith, S.M. Calcium-mediated repression of beta-catenin and its transcriptional signaling mediates neural crest cell death in an avian model of fetal alcohol syndrome. Birth Defects Res. A Clin. Mol. Teratol. 2011, 91, 591–602, doi:10.1002/bdra.20833.
[89]  Garic-Stankovic, A.; Hernandez, M.R.; Chiang, P.J.; Debelak-Kragtorp, K.A.; Flentke, G.R.; Armant, D.R.; Smith, S.M. Ethanol triggers neural crest apoptosis through the selective activation of a pertussis toxin-sensitive G protein and a phospholipase Cbeta-dependent Ca2+ transient. Alcohol. Clin. Exp. Res. 2005, 29, 1237–1246, doi:10.1097/01.ALC.0000172460.05756.D9.
[90]  Vangipuram, S.D.; Grever, W.E.; Parker, G.C.; Lyman, W.D. Ethanol increases fetal human neurosphere size and alters adhesion molecule gene expression. Alcohol. Clin. Exp. Res. 2008, 32, 339–347, doi:10.1111/j.1530-0277.2007.00568.x.
[91]  Garic, A.; Flentke, G.R.; Amberger, E.; Hernandez, M.; Smith, S.M. CaMKII activation is a novel effector of alcohol’s neurotoxicity in neural crest stem/progenitor cells. J. Neurochem. 2011, 118, 646–657, doi:10.1111/j.1471-4159.2011.07273.x.
[92]  Luo, J. Lithium-mediated protection against ethanol neurotoxicity. Front. Neurosci. 2010, 4, 41.
[93]  Zhou, F.C. DNA methylation program during development. Front. Biol. 2012, 485–494, doi:10.1007/s11515-012-9246-1.
[94]  Mill, J.; Petronis, A. Pre- and peri-natal environmental risks for attention-deficit hyperactivity disorder (ADHD): The potential role of epigenetic processes in mediating susceptibility. J. Child Psychol. Psychiatry 2008, 49, 1020–1030, doi:10.1111/j.1469-7610.2008.01909.x.
[95]  Resendiz, M.; Chen, Y.; Ozturk, N.C.; Zhou, F.C. Epigenetic medicine and fetal alcohol spectrum disorders. Epigenomics 2013, 5, 73–86, doi:10.2217/epi.12.80.
[96]  Haycock, P.C. Fetal alcohol spectrum disorders: The epigenetic perspective. Biol. Reprod. 2009, 81, 607–617, doi:10.1095/biolreprod.108.074690.
[97]  Garro, A.J.; McBeth, D.L.; Lima, V.; Lieber, C.S. Ethanol consumption inhibits fetal DNA methylation in mice: Implications for the fetal alcohol syndrome. Alcohol. Clin. Exp. Res. 1991, 15, 395–398, doi:10.1111/j.1530-0277.1991.tb00536.x.
[98]  Kaminen-Ahola, N.; Ahola, A.; Maga, M.; Mallitt, K.A.; Fahey, P.; Cox, T.C.; Whitelaw, E.; Chong, S. Maternal ethanol consumption alters the epigenotype and the phenotype of offspring in a mouse model. PLoS Genet. 2010, 6, e1000811, doi:10.1371/journal.pgen.1000811.
[99]  Bonsch, D.; Lenz, B.; Fiszer, R.; Frieling, H.; Kornhuber, J.; Bleich, S. Lowered DNA methyltransferase (DNMT-3b) mRNA expression is associated with genomic DNA hypermethylation in patients with chronic alcoholism. J. Neural. Transm. 2006, 113, 1299–1304, doi:10.1007/s00702-005-0413-2.
[100]  Zhou, F.C.; Balaraman, Y.; Teng, M.; Liu, Y.; Singh, R.P.; Nephew, K.P. Alcohol alters DNA methylation patterns and inhibits neural stem cell differentiation. Alcohol. Clin. Exp. Res. 2011, 35, 735–746, doi:10.1111/j.1530-0277.2010.01391.x.
[101]  Liu, Y.; Balaraman, Y.; Wang, G.; Nephew, K.P.; Zhou, F.C. Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation. Epigenetics 2009, 4, 500–511, doi:10.4161/epi.4.7.9925.
[102]  Chen, Y.; Ozturk, N.C.; Zhou, F.C. DNA methylation program in developing hippocampus and its alteration by alcohol. PLoS One 2013, 8, e60503, doi:10.1371/journal.pone.0060503.
[103]  Zhou, F.C.; Chen, Y.; Love, A. Cellular DNA methylation program during neurulation and its alteration by alcohol exposure. Birth Defects Res. A Clin. Mol. Teratol. 2011, 91, 703–715, doi:10.1002/bdra.20820.
[104]  Singh, R.P.; Shiue, K.; Schomberg, D.; Zhou, F.C. Cellular epigenetic modifications of neural stem cell differentiation. Cell Transplant. 2009, 18, 1197–1211, doi:10.3727/096368909X12483162197204.
[105]  Subbanna, S.; Shivakumar, M.; Umapathy, N.S.; Saito, M.; Mohan, P.S.; Kumar, A.; Nixon, R.A.; Verin, A.D.; Psychoyos, D.; Basavarajappa, B.S. G9a-mediated histone methylation regulates ethanol-induced neurodegeneration in the neonatal mouse brain. Neurobiol. Dis. 2013, 54, 475–485, doi:10.1016/j.nbd.2013.01.022.
[106]  Bekdash, R.A.; Zhang, C.; Sarkar, D.K. Gestational choline supplementation normalized fetal alcohol-induced alterations in histone modifications, DNA methylation, and proopiomelanocortin (POMC) gene expression in beta-endorphin-producing POMC neurons of the hypothalamus. Alcohol. Clin. Exp. Res. 2013, doi:10.1111/acer.12082.
[107]  Mercer, T.R.; Dinger, M.E.; Mattick, J.S. Long non-coding RNAs: Insights into functions. Nat. Rev. Genet. 2009, 10, 155–159, doi:10.1038/nrg2521.
[108]  Wang, G.; Wang, X.; Wang, Y.; Yang, J.Y.; Li, L.; Nephew, K.P.; Edenberg, H.J.; Zhou, F.C.; Liu, Y. Identification of transcription factor and microRNA binding sites in responsible to fetal alcohol syndrome. BMC Genomics 2008, 9, S19.
[109]  Sathyan, P.; Golden, H.B.; Miranda, R.C. Competing interactions between micro-RNAs determine neural progenitor survival and proliferation after ethanol exposure: Evidence from an ex vivo model of the fetal cerebral cortical neuroepithelium. J. Neurosci. 2007, 27, 8546–8557, doi:10.1523/JNEUROSCI.1269-07.2007.
[110]  Soares, A.R.; Pereira, P.M.; Ferreira, V.; Reverendo, M.; Simoes, J.; Bezerra, A.R.; Moura, G.R.; Santos, M.A. Ethanol exposure induces upregulation of specific microRNAs in zebrafish embryos. Toxicol. Sci. 2012, 127, 18–28, doi:10.1093/toxsci/kfs068.
[111]  Shirasaka, T.; Hashimoto, E.; Ukai, W.; Yoshinaga, T.; Ishii, T.; Tateno, M.; Saito, T. Stem cell therapy: Social recognition recovery in a FASD model. Transl. Psychiatry 2012, 2, e188, doi:10.1038/tp.2012.111.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133