Huntington’s disease (HD), a neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin gene, impairs information processing in the striatum, which, as part of the basal ganglia, modulates motor output. Growing evidence suggests that huntingtin interacting protein 14 (HIP14) contributes to HD neuropathology. Here, we recorded local field potentials (LFPs) in the striatum as HIP14 knockout mice and wild-type controls freely navigated a plus-shaped maze. Upon entering the choice point of the maze, HIP14 knockouts tend to continue in a straight line, turning left or right significantly less often than wild-types, a sign of motor inflexibility that also occurs in HD mice. Striatal LFP activity anticipates this difference. In wild-types, the power spectral density pattern associated with entry into the choice point differs significantly from the pattern immediately before entry, especially at low frequencies (≤13 Hz), whereas HIP14 knockouts show no change in LFP activity as they enter the choice point. The lack of change in striatal activity may explain the turning deficit in the plus maze. Our results suggest that HIP14 plays a critical role in the aberrant behavioral modulation of striatal neuronal activity underlying motor inflexibility, including the motor signs of HD.
References
[1]
Huntington, G. On chorea. J. Neuropsychiatry Clin. Neurosci. 2003, 15, 109–112, doi:10.1176/appi.neuropsych.15.1.109.
[2]
Estrada-Sánchez, A.M.; Rebec, G.V. Corticostriatal dysfunction and glutamate transporter 1 (GLT1) in Huntington’s disease: Interactions between neurons and astrocytes. Basal Ganglia 2012, 2, 57–66, doi:10.1016/j.baga.2012.04.029.
[3]
Estrada-Sánchez, A.M.; Rebec, G.V. Role of cerebral cortex in the neuropathology of Huntington’s disease. Front. Neural Circuits 2013, doi:10.3389/fncir.2013.00019.
[4]
Vonsattel, J.P.; Myers, R.H.; Stevens, T.J.; Ferrante, R.J.; Bird, E.D.; Richardson, E.P., Jr. Neuropathological classification of Huntington’s disease. J. Neuropathol. Exp. Neurol. 1985, 44, 559–577, doi:10.1097/00005072-198511000-00003.
[5]
The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993, 72, 971–983, doi:10.1016/0092-8674(93)90585-E.
[6]
Huang, K.; Yanai, A.; Kang, R.; Arstikaitis, P.; Singaraja, R.R.; Metzler, M.; Mullard, A.; Haigh, B.; Gauthier-Campbell, C.; Gutekunst, C.A.; et al. Huntingtin-interacting protein HIP14 is a palmitoyl transferase involved in palmitoylation and trafficking of multiple neuronal proteins. Neuron 2004, 44, 977–986, doi:10.1016/j.neuron.2004.11.027.
[7]
Rush, D.B.; Leon, R.T.; McCollum, M.H.; Treu, R.W.; Wei, J. Palmitoylation and trafficking of GAD65 are impaired in a cellular model of Huntington’s disease. Biochem. J. 2012, 442, 39–48, doi:10.1042/BJ20110679.
[8]
Singaraja, R.R.; Hadano, S.; Metzler, M.; Givan, S.; Wellington, C.L.; Warby, S.; Yanai, A.; Gutekunst, C.A.; Leavitt, B.R.; Yi, H.; et al. HIP14, a novel ankyrin domain-containing protein, links huntingtin to intracellular trafficking and endocytosis. Hum. Mol. Genet. 2002, 11, 2815–2828, doi:10.1093/hmg/11.23.2815.
[9]
Cepeda, C.; Wu, N.; Andre, V.M.; Cummings, D.M.; Levine, M.S. The corticostriatal pathway in Huntington’s disease. Prog. Neurobiol. 2007, 81, 253–271, doi:10.1016/j.pneurobio.2006.11.001.
Rebec, G.V.; Barton, S.J.; Marseilles, A.M.; Collins, K. Ascorbate treatment attenuates the Huntington behavioral phenotype in mice. Neuroreport 2003, 14, 1263–1265, doi:10.1097/00001756-200307010-00015.
[12]
Hong, S.L.; Barton, S.J.; Rebec, G.V. Altered neural and behavioral dynamics in Huntington’s disease: An entropy conservation approach. PLoS One 2012, 7, e30879, doi:10.1371/journal.pone.0030879.
[13]
Brouwers, P.; Cox, C.; Martin, A.; Chase, T.; Fedio, P. Differential perceptual-spatial impairment in Huntington’s and Alzheimer’s dementias. Arch. Neurol. 1984, 41, 1073–1076, doi:10.1001/archneur.1984.04050210071017.
[14]
Estrada-Sanchez, A.M.; Barton, S.J.; Burroughs, C.L.; Doyle, A.R.; Rebec, G.V. Dysregulated striatal neuronal processing and impaired motor behavior in mice lacking huntingtin interacting protein 14 (HIP14). PLoS One 2013. in press.
[15]
Young, F.B.; Franciosi, S.; Spreeuw, A.; Deng, Y.; Sanders, S.; Tam, N.C.; Huang, K.; Singaraja, R.R.; Zhang, W.; Bissada, N.; et al. Low levels of human HIP14 are sufficient to rescue neuropathological, behavioural, and enzymatic defects due to loss of murine HIP14 in Hip14?/? Mice. PLoS One 2012, 7, e36315, doi:10.1371/journal.pone.0036315.
[16]
Fowler, S.C.; Miller, B.R.; Gaither, T.W.; Johnson, M.A.; Rebec, G.V. Force-plate quantification of progressive behavioral deficits in the R6/2 mouse model of Huntington’s disease. Behav. Brain Res. 2009, 202, 130–137, doi:10.1016/j.bbr.2009.03.022.