Recently, highly functional biosensors have been developed in preparation for possible large-scale terrorist attacks using chemical warfare agents. Practically applicable sensors are required to have various abilities, such as high portability and operability, the capability of performing rapid and continuous measurement, as well as high sensitivity and selectivity. We developed the detection method of capsaicinoids, the main component of some lachrymators, using a surface plasmon resonance (SPR) immunosensor as an on-site detection sensor. Homovanillic acid, which has a vanillyl group similar to capsaicinoids such as capsaicin and dihydrocapsaicin, was bound to Concholepas concholepas hemocyanin (CCH) for use as an immunogen to generate polyclonal antibodies. An indirect competitive assay was carried out to detect capsaicinoids using SPR sensor chips on which different capsaicin analogues were immobilized. For the sensor chip on which 4-hydroxy-3-methoxybenzylamine hydrochloride was immobilized, a detection limit of 150 ppb was achieved. We found that the incubation time was not required and the detection can be completed in five minutes.
References
[1]
Seto, Y. Analytical and on-site detection methods for chemical warfare agents. Yakugaku Zasshi 2006, 126, 1279–1299, doi:10.1248/yakushi.126.1279.
[2]
Spicer, O., Jr.; Almirall, J.R. Extraction of capsaicins in aerosol defense sprays from fabrics. Talanta 2005, 67, 377–382, doi:10.1016/j.talanta.2005.05.031.
[3]
Pe?a-Alvarez, A.; Ramírez-Maya, E.; Alvarado-Suárez, L.A. Analysis of capsaicin and dihydrocapsaicin in peppers and pepper sauces by solid phase microextraction-gas chromatography-mass spectrometry. J. Chromatogr. A 2009, 1216, 2843–2847, doi:10.1016/j.chroma.2008.10.053.
[4]
Pepler, R.S.; Esseiva, P.; Gueniat, O. The study of defence gas sprays in forensic sciences: Detection, identification, persistence and ballistics. Sci. Justice 1998, 38, 203–210, doi:10.1016/S1355-0306(98)72106-9.
[5]
Barbero, G.F.; Liazid, A.; Palma, M.; Barroso, C.G. Fast determination of capsaicinoids from peppers by high-performance liquid chromatography using a reversed phase monolithic column. Food Chem. 2008, 107, 1276–1282, doi:10.1016/j.foodchem.2007.06.065.
[6]
Reilly, C.A.; Crouch, D.J.; Yost, G.S.; Fatah, A.A. Determination of capsaicin, dihydrocapsaicin, and nonivamide in self-defense weapons by liquid chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2001, 912, 259–267, doi:10.1016/S0021-9673(01)00574-X.
[7]
Noami, M.; Igarashi, K.; Ueda, K.; Yamamoto, S.; Nogami, Y.; Kasuya, F.; Seto, Y.; Kataoka, M. Determination of capsaicin and its hydrolyzed metabolite vanillylamine in body fluids by liquid chromatography-mass spectrometry combined with solid-phase extraction. Jpn. J. Forensic Toxicol. 2004, 22, 33–37.
[8]
Laskaridou-Monnerville, A. Determination of capsaicin and dihydrocapsaicin by micellar electrokinetic capillary chromatography and its application to various species of Capsicum, solanaceae. J. Chromatogr. A 1999, 838, 293–302, doi:10.1016/S0021-9673(98)00969-8.
[9]
Mohammad, R.; Ahmad, M.; Heng, L.Y. An amperometric biosensor utilizing a ferrocene-mediated horseradish peroxidase reaction for the determination of capsaicin (chili hotness). Sensors 2013, 13, 10014–10026, doi:10.3390/s130810014.
[10]
Kataoka, M.; Seto, Y.; Tsuge, K.; Noami, M. Stability and detectability of lachrymators and their degradation products in evidence samples. J. Forensic Sci. 2002, 47, 44–51.
[11]
Mizuta, Y.; Onodera, T.; Singh, P.; Matsumoto, K.; Miura, N.; Toko, K. Development of an oligo(ethylene glycol)-based SPR immunosensor for TNT detection. Biosens. Bioelectron. 2008, 24, 191–197, doi:10.1016/j.bios.2008.03.042.
[12]
Nagatomo, K.; Kawaguchi, T.; Miura, N.; Toko, K.; Matsumoto, K. Development of a sensitive surface plasmon resonance immunosensor for detection of 2,4-dinitrotoluene with a novel oligo (ethylene glycol)-based sensor surface. Talanta 2009, 79, 1142–1148, doi:10.1016/j.talanta.2009.02.018.
[13]
Yatabe, R.; Onodera, T.; Toko, K. Fabrication of an SPR sensor surface with antifouling properties for highly sensitive detection of 2,4,6-trinitrotoluene using surface-initiated atom transfer polymerization. Sensors 2013, 13, 9294–9304, doi:10.3390/s130709294.
[14]
Onodera, T. Electronic Dog Nose Using Surface Plasmon Resonance Method. In Biochemical Sensors: Mimicking Gustatory and Olfactory Senses; Toko, K., Ed.; Pan Stanford Publishing: Singapore, 2013; pp. 351–375.
[15]
Tanaka, Y.; Yatabe, R.; Nagatomo, K.; Onodera, T.; Matsumoto, K.; Toko, K. Preparation and characteristics of Rat Anti-1,3,5-Trinitroperhydro-1,3,5-Triazine (RDX) monoclonal antibody and detection of RDX using surface plasmon resonance immunosensor. IEEE Sens. J. 2013, 13, 452–458.
[16]
Onodera, T.; Shimizu, T.; Miura, N.; Matsumoto, K.; Toko, K. Surface plasmon resonance based sensitive immunosensor for benzaldehyde detection. IEEJ Trans. Sens. Micromach. 2010, 130, 269–274, doi:10.1541/ieejsmas.130.269.
[17]
Onodera, T.; Mizuta, Y.; Horikawa, K.; Singh, P.; Matsumoto, K.; Miura, N.; Toko, K. Displacement immunosensor based on surface plasmon resonance for rapid and highly sensitive detection of 2,4,6-trinitrotoluene. Sensor. Mater. 2011, 23, 39–52.
[18]
Singh, P.; Onodera, T.; Mizuta, Y.; Matsumoto, K.; Miura, N.; Toko, K. Dendrimer modified biochip for detection of 2,4,6 trinitrotoluene on SPR immunosensor: Fabrication and advantages. Sens. Actuator. B Chem. 2009, 137, 403–409, doi:10.1016/j.snb.2008.12.027.
[19]
Lahiri, J.; Isaacs, L.; Tien, J.; Whitesides, G.M. A Strategy for the Generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate: A surface plasmon resonance study. Anal. Chem. 1999, 71, 777–790, doi:10.1021/ac980959t.