Sphingomyelin is found in the cell membrane of all eukaryotic cells, and was for a long time considered merely as a structural component. However, during the last two decades, metabolites of sphingomyelin, especially sphingosine 1-phosphate (S1P), have proven to be physiologically significant regulators of cell function. Through its five different G protein-coupled receptors, S1P regulates a wide array of cellular processes, ranging from stimulating cellular proliferation and migration, to the inhibition of apoptosis and induction of angiogenesis and modulation of cellular calcium homeostasis. Many of the processes regulated by S1P are important for normal cell physiology, but may also induce severe pathological conditions, especially in malignancies like cancer. Thus, understanding S1P signaling mechanisms has been the aim of a multitude of investigations. Great interest has also been shown in understanding the action of sphingosine kinase (SphK), i.e., the kinase phosphorylating sphingosine to S1P, and the interactions between S1P and growth factor signaling. In the present review, we will discuss recent findings regarding the possible importance of S1P and SphK in the etiology of thyroid cancer. Although clinical data is still scarce, our in vitro findings suggest that S1P may function as a “double-edged sword”, as the receptor profile of thyroid cancer cells largely determines whether S1P stimulates or blocks cellular migration. We will also discuss the interactions between S1P- and VEGF-evoked signaling, and the importance of a S1P 1-VEGF receptor 2 complex in thyroid cancer cells.
References
[1]
Breslow, D.K.; Weissman, J.S. Membranes in balance: Mechanisms of sphingolipid homeostasis. Mol. Cell 2010, 40, 267–279, doi:10.1016/j.molcel.2010.10.005.
[2]
Szabo, I.; Adams, C.; Gulbins, E. Ion channels and membrane rafts in apoptosis. Pflüegers Arch. 2004, 448, 304–312, doi:10.1007/s00424-004-1259-4.
Beech, D.J. Integration of transient receptor potential canonical channels with lipids. Acta Physiol. (Oxf) 2012, 204, 227–237, doi:10.1111/j.1748-1716.2011.02311.x.
[5]
T?rnquist, K. Sphingosine 1-phosphate, sphingosine kinase and autocrine calcium signalling in thyroid cells. Acta Physiol. (Oxf) 2012, 204, 151–157, doi:10.1111/j.1748-1716.2011.02265.x.
[6]
Pitson, S.M. Regulation of sphingosine kinase and sphingolipid signaling. Trends Biochem. Sci. 2010, 36, 97–107, doi:10.1016/j.tibs.2010.08.001.
[7]
Hait, N.C.; Allegood, J.; Maceyka, M.; Strub, G.M.; Harikumar, K.B.; Singh, S.K.; Luo, C.; Marmorstein, R.; Kordula, T.; Milstien, S.; Spiegel, S. Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 2009, 325, 1254–1257, doi:10.1126/science.1176709.
[8]
Strub, G.M.; Paillard, M.; Liang, J.; Gomez, L.; Allegood, J.C.; Hait, N.C.; Maceyka, M.; Price, M.M.; Chen, Q.; Simpson, D.C.; et al. Sphingosine-1-phosphate produced by sphingosine kinase 2 in mitochondria interacts with prohibitin 2 to regulate complex IV assembly and respiration. FASEB J. 2011, 25, 600–612, doi:10.1096/fj.10-167502.
[9]
Pappu, R.; Schwab, S.R.; Cornelissan, I.; Pereira, J.P.; Regard, J.B.; Xu, Y.; Camerer, E.; Zheng, Y.-W.; Huang, Y.; Cyster, J.G.; Coughlin, S.H. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 2007, 316, 295–298, doi:10.1126/science.1139221.
[10]
Venkataraman, K.; Lee, Y.M.; Michaud, J.; Thangada, S.; Ai, Y.; Bonkovsky, H.L.; Parikh, N.S.; Habrukowich, C.; Hla, T. Vasular endothelium as a contributor of plasma sphingosine 1-phosphate. Circ. Res. 2008, 102, 669–679, doi:10.1161/CIRCRESAHA.107.165845.
[11]
Murata, N.; Sato, K.; Tomura, H.; Yanagita, M.; Kuwabara, A.; Ui, M.; Okajima, F. Interaction of sphingosine 1-phosphate with plasma components, including lipoproteins, regulates the lipid receptor-mediated actions. Biochem. J. 2000, 352, 809–815, doi:10.1042/0264-6021:3520809.
Strub, G.M.; Maceyka, M.; Hait, N.C.; Milstein, S.; Spiegel, S. Extracellular and intracellular actions of sphingosine-1-phosphate. Adv. Exp. Med. Biol. 2010, 688, 141–155.
[14]
Pyne, N.J.; Pyne, S. Sphingosine 1-phosphate and cancer. Nat. Rev. Cancer 2010, 10, 489–503, doi:10.1038/nrc2875.
[15]
Yester, J.W.; Tizazu, E.; Harikumar, K.B.; Kordula, T. Extracellular and intracellular sphingosine-1-phosphate in cancer. Cancer Metastasis Rev. 2011, 30, 577–597, doi:10.1007/s10555-011-9305-0.
[16]
T?rnquist, K.; Ekokoski, E. Effect of sphingosine derivatives on calcium fluxes in thyroid FRTL-5 cells. Biochem. J. 1994, 299, 213–218.
[17]
Okajima, F.; Tomura, H.; Sho, K.; Kimura, T.; Sato, K.; Im, D.-S.; Akbar, M.; Kondo, Y. Sphingosine 1-phosphate stimulates hydrogen peroxide generation through activation of phospholipase C-Ca2+ system in FRTL-5 thyroid cells: Possible involvement of guanosine triphosphate-binding proteins in the lipid signaling. Endocrinology 1997, 138, 220–229, doi:10.1210/en.138.1.220.
[18]
T?rnquist, K.; Saarinen, P.; Vainio, M.; Ahlstr?m, M. Sphingosine 1-phosphate mobilizes sequestered calcium, activates calcium entry, and stimulates DNA synthesis in thyroid FRTL-5 cells. Endocrinology 1997, 138, 4049–4057, doi:10.1210/en.138.10.4049.
[19]
Bj?rklund, S.; Palmberg, S.; Rask, S.; Westerdahl, A.-C.; T?rnquist, K. Effects of sphingosine 1-phosphate on calcium signaling, proliferation, and S1P2 receptor expression in PC Cl3 rat thyroid cells. Mol. Cell. Endocrinol. 2005, 231, 65–74, doi:10.1016/j.mce.2004.12.001.
[20]
Mattie, M.; Brooker, G.; Spiegel, S. Sphingosine-1-phosphate, a putative second messenger, mobilizes calcium from internal stores via an inositol trisphosphate-independent pathway. J. Biol. Chem. 1994, 269, 3181–3188.
[21]
H?gback, S.; Leppim?ki, P.; Rudn?s, B.; Bj?rklund, S.; Slotte, J.P.; T?rnquist, K. Ceramide 1-phosphate increases intracellular free calcium concentrations in tyroid FRTL-5 cells. Evidence for an effect mediated by inositol 1,4,5-trisphosphate and intracellular sphingosine 1-phosphate. Biochem. J. 2003, 370, 111–119, doi:10.1042/BJ20020970.
[22]
Meyer zu Heringdorf, D.; Lass, H.; Alemany, R.; Laser, K.T.; Neumann, E.; Zhang, C.; Schmidt, M.; Rauen, U.; Jakobs, K.H.; van Koppen, C.J. Sphingosine kinase mediated Ca2+ signalling by G-protein-coupled receptors. EMBO J. 1998, 17, 2830–2837, doi:10.1093/emboj/17.10.2830.
[23]
T?rnquist, K. Sphingosine 1-phosphate activates Na+-H+ exchange in thyroid FRTL-5 cells. Am. J. Physiol. 1997, 272, C1052–C1057.
[24]
Kimura, T.; Okajima, F.; Kikuchi, T.; Kuwabara, A.; Tomura, H.; Sho, K.; Kobayashi, I.; Kondo, Y. Inhibition of TSH-induced hydrogen peroxide production by TNFa through a sphingomyelinase signaling pathway. Am. J. Physiol. 1997, 273, E638–E643.
[25]
Kimura, T.O.F.; Sho, K.; Kobayashi, I.; Kondo, Y. Thyrotropin-induced hydrogen peroxide production in FRTL-5 thyroid cells is mediated not by adenosine 3',5'-monophosphate, but by Ca2+ signaling followed by phospholipase A2 activation and potentiated by an adenosine derivative. Endocrinology 1995, 136, 116–123, doi:10.1210/en.136.1.116.
[26]
T?rnquist, K.; Malm, A.-M.; Kronqvist, R.; Pasternack, M.; Bj?rklund, S.; Tuominen, R.; Slotte, J.P. Tumor necrosis factor a, sphingomyelinase and ceramide attenuate store-operated calcium entry in thyroid FRTL-5 cells. J. Biol. Chem. 1999, 274, 9370–9377, doi:10.1074/jbc.274.14.9370.
[27]
Spiegel, S.; Milstien, S. Sphingosine-1-phosphate: An enigmatic signalling lipid. Nat. Rev. Mol. Cell Biol. 2003, 4, 397–407, doi:10.1038/nrm1103.
[28]
Balthasar, S.; Samulin, J.; Ahlgren, H.; Bergelin, N.; Lundqvist, M.; Toescu, E.C.; Eggo, M.C.; T?rnquist, K. Sphingosine 1-phosphate receptor expression profile and regulation of migration in human thyroid cancer cells. Biochem. J. 2006, 398, 547–556, doi:10.1042/BJ20060299.
[29]
Maceyka, M.; Harikumar, K.B.; Milstien, S.; Spiegel, S. Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol. 2012, 22, 50–60, doi:10.1016/j.tcb.2011.09.003.
[30]
Guan, H.; Liu, L.; Cai, J.; Liu, J.; Ye, C.; Li, M.; Li, Y. Sphingosine kinase 1 is overexpressed and promotes proliferation in human thyroid cancer. Mol. Endocrinol. 2011, 25, 1858–1866, doi:10.1210/me.2011-1048.
[31]
Asghar, M.Y.; Viitanen, T.; Kemppainen, K.; T?rnquist, K. Sphingosine 1-phosphate and human ether-a-go-go-related gene potassium channels modulate migration in human anaplastic thyroid cancer cells. Endoc-Relat. Cancer 2012, 19, 667–680, doi:10.1530/ERC-12-0092.
[32]
Takuwa, N.; Du, W.; Kaneko, E.; Okamoto, H.; Yoshioka, K.; Takuwa, Y. Tumor-suppressive sphingosine-1-phosphate receptor-2 counteracting tumor-promoting sphingosine-1-phosphate receptor-1 and sphingosine kinase 1. Am. J. Cancer Res. 2011, 1, 460–481.
[33]
Bergelin, N.; Blom, T.; L?f, C.; Alam, C.; Balthasar, S.; Heikkil?, J.; Slotte, J.P.; Hinkkanen, A.; T?rnquist, K. Sphingosine kinase as an oncogene: Autocrine sphingosine 1-phosphate enhances ML-1 thyroid carcinoma cell migration by a mechanism dependent on PKC-α and Erk1/2. Endocrinology 2009, 150, 2055–2063.
[34]
Xia, P.; Gamble, J.R.; Wang, L.; Pitson, S.M.; Moretti, P.A.; Wattenberg, B.W.; D'Andrea, R.J.; Vadas, M.A. An oncogenic role of sphingosine kinase. Curr. Biol. 2000, 10, 1527–1530, doi:10.1016/S0960-9822(00)00834-4.
[35]
Olivera, A.; Kohama, T.; Edsall, L.; Nava, V.; Cuvillier, O.; Poulton, S.; Spiegel, S. Sphingosine kinase expresion increases intracellular sphingosine-1-phosphate and promotes cell growth and survival. J. Cell Biol. 1999, 147, 545–558, doi:10.1083/jcb.147.3.545.
[36]
Ruckh?berle, E.; Rody, A.; Engels, K.; Gaetje, R.; von Minckwitz, G.; Schiffmann, S.; Gr?sch, S.; Geisslinger, G.; Holtrich, U.; Karn, T.; Kaufmann, M. Microarray analysis of altered sphingolipid metabolism reveals prognostic significance of sphingosine kinase 1 in breast cancer. Breast Cancer Res. Treat. 2008, 112, 41–52.
[37]
Alvarez, J.; Milstien, S.; Spiegel, S. Autocrine and paracrine roles of sphingosine-1-phosphate. TRENDS Endocrinol. Metab. 2007, 18, 300–307, doi:10.1016/j.tem.2007.07.005.
[38]
Pyne, N.J.; Pyne, S. Receptor tyrosine kinase-G-protein-coupled receptor signalling platforms: Out of the shadow? Trends Pharmacol. Sci. 2011, 32, 443–450.
[39]
Takabe, K.; Kim, R.H.; Allegood, J.C.; Mitra, P.; Ramachandran, S.; Nagahishi, M.; Harikumar, K.B.; Hait, N.C.; Milstien, S.; Spiegel, S. Estradiol induces export of sphingosine 1-phosphate from breast cancer cells via ABCC1 and ABCG2. J. Biol. Chem. 2010, 285, 10477–10486, doi:10.1074/jbc.M109.064162.
[40]
Sato, K.; Malchinkhuu, E.; Horiuchi, Y.; Mogi, C.; Tomura, H.; Tosaka, M.; Yoshimoto, Y.; Kuwabara, A.; Okajima, F. Citical role of ABCA1 transporter in sphingosine 1-phosphate release from astrocytes. J. Neurochem. 2007, 103, 2610–2619.
Miller, A.V.; Alvarez, S.E.; Spiege, S.; Lebman, D.A. Sphingosine kinase and sphingosine-1-phosphate are critical for transforming growth factor beta-induced extracellular signal-regulated kinase 1 and 2 activation and promotion of migration and invasion of esophageal cancer cells. Mol. Cell Biol. 2008, 28, 4142–4151, doi:10.1128/MCB.01465-07.
[46]
Lebman, D.A.; Spiegel, S. Cross-talk at the crossroads of sphingosine-1-phosphate, growth factors, and cytokine signaling. J. Lipid Res. 2008, 49, 1388–1394, doi:10.1194/jlr.R800008-JLR200.
[47]
Pyne, N.J.; Pyne, S. Sphingosine 1-phosphate, lysophosphatidic acid and growth factor signaling and termination. Biochi. Biophys. Acta 2008, 1781, 467–476, doi:10.1016/j.bbalip.2008.05.004.
Vieira, J.M.; Santos, S.C.R.; Espadinha, C.; Correia, I.; Vag, T.; Casalou, C.; Cavaco, B.M.; Catarino, A.S.; Dias, S.; Leite, V. Expression of vascular endothelial growth factor (VEGF) and its receptors in thyroid carcinomas of follicular origin: A potent autocrine loop. Eur. J. Endocrinol. 2005, 153, 701–709, doi:10.1530/eje.1.02009.
[50]
Kim, D.S.; Franklyn, J.A.; Boelaert, K.; Eggo, M.C.; Watkinson, J.C.; McCabe, C.J. Pituitary tumor transforming gene (PTTG) stimulates thyroid cell proliferation via vascular endothelial growth factor/kinesin insert domain receptor/inhibitor of DNA binding-3 autocrine pathway. J. Clin. Endocrinol. Metab. 2006, 91, 4603–4611, doi:10.1210/jc.2006-1291.
[51]
Endo, A.; Nagashima, K.-I.; Kurose, H.; Mochizuki, S.; Matsuda, M.; Mochizuki, N. Sphingosine 1-phosphate induces membrane ruffling and increases motility of human umbilical vein endotjelial cells via vascular endothelial growth factor receptor and CRKII. J. Biol. Chem. 2002, 277, 23747–23754.
[52]
Igarashi, J.; Erwin, P.A.; Dantas, A.P.V.; Chen, H.; Michel, T. VEGF induces S1P1 receptors in endothelial cells: Implications for cross-talk between sphingolipid and growth factor receptors. Proc. Natl. Acad. Sci. USA 2003, 100, 10664–10669.
[53]
Hughes, S.K.; Wacker, B.K.; Kaneda, M.M.; Elbert, D.L. Fluid shear stress modulates cell migration induced by sphingosine 1-phosphate and vascular endothelial growth factor. Ann. Biomed. Eng. 2005, 33, 1004–1014.
[54]
Fieber, C.B.; Eldridge, J.; Taha, T.A.; Obeid, L.M.; Muise-Helmericks, R.C. Modulation of total Akt kinase by increased expression of a single isoform: Requirement of the sphingosine-1-phosphate receptor EDG3/S1P3, for the VEGF-dependent expression of Akt3 in primary endothelial cells. Exp. Cell Res. 2006, 312, 1164–1173, doi:10.1016/j.yexcr.2006.01.022.
[55]
Shu, X.; Wu, W.; Mosteller, R.D.; Broek, D. Sphingosine kinase mediates vascular endothelial growth factor-induced activation of ras and mitogen-activated protein kinases. Mol. Cell. Biol. 2002, 22, 7758–7768, doi:10.1128/MCB.22.22.7758-7768.2002.
[56]
Balthasar, S.; Bergelin, N.; L?f, C.; Vainio, M.; Andersson, S.; T?rnquist, K. Interaction between sphingosine 1-phosphate and vascular endothelial growth factor signalling in ML-1 follicular thyroid cancer cells. Endoc-Relat. Cancer 2008, 15, 521–534, doi:10.1677/ERC-07-0253.
[57]
Bergelin, N.; L?f, C.; Balthasar, S.; Kalhori, V.; T?rnquist, K. S1P1 and VEGFR-2 form a signaling complex with extracellular regulated kinase 1/2 and protein kinase C-α regulating ML-1 thyroid carcinoma cell migration. Endocrinology 2010, 151, 2994–3005, doi:10.1210//en.2009-1387.
[58]
Waters, C.M.; Connell, M.C.; Pyne, S.; Pyne, N.J. c-Src is involved in regulating signal transmission from PDGFβ receptor-GPCR(s) complexes in mammalian cells. Cell. Signal. 2005, 17, 263–277, doi:10.1016/j.cellsig.2004.07.011.
[59]
Sukocheva, O.; Wadham, C.; Holmes, A.; Albanese, N.; Verrier, E.; Feng, F.; Bernal, A.; Derian, C.K.; Ullrich, A.; Vadas, M.A.; Xia, P. Estrogen transactivates EGFR via the sphingosine 1-phosphate receptor EDG-3: The role of sphingosine kinase-1. J. Cell Biol. 2006, 173, 301–310, doi:10.1083/jcb.200506033.
[60]
Arcangeli, A. Ion channels and transporters in cancer. 3. Ion channels in tumor cell-microenvironment cross talk. Am. J. Physiol. Cell Physiol. 2011, 301, C762–C771, doi:10.1152/ajpcell.00113.2011.
[61]
Jehle, J.; Schweizer, P.A.; Katus, H.A.; Thomas, D. Novel roles for HERG K+ channels in cell proliferation and apoptosis. Cell Death Dis. 2011, 2, e193, doi:10.1038/cddis.2011.77.
[62]
Masi, A.; Bechetti, A.; Restano-Cassulini, R.; Polvani, S.; Hofmann, G.; Buccoliero, A.M.; Paglierani, M.; Pollo, B.; Taddei, G.L.; Gallini, P.; et al. HERG1 channels are overexpressed in glioblastoma multiforme and modulate VEGF secretion in glioblastoma cell lines. Br. J. Cancer 2005, 93, 781–792, doi:10.1038/sj.bjc.6602775.
[63]
Ramstr?m, C.; Chapman, H.; Viitanen, T.; Afrasiabi, E.; Fox, H.; Kivel?, J.; Soini, S.; Korhonen, L.; Lindholm, D.; Pasternack, M.; T?rnquist, K. Regulation of HERG (KCNH2) potassium channel surface expression by diacylglycerol. Cell. Mol. Life Sci. 2010, 67, 157–169, doi:10.1007/s00018-009-0176-2.