全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biomolecules  2013 

Production of Fungal Glucoamylase for Glucose Production from Food Waste

DOI: 10.3390/biom3030651

Keywords: glucoamylase production, Aspergillus awamori, food waste hydrolysis, glucose production

Full-Text   Cite this paper   Add to My Lib

Abstract:

The feasibility of using pastry waste as resource for glucoamylase (GA) production via solid state fermentation (SSF) was studied. The crude GA extract obtained was used for glucose production from mixed food waste. Our results showed that pastry waste could be used as a sole substrate for GA production. A maximal GA activity of 76.1 ± 6.1 U/mL was obtained at Day 10. The optimal pH and reaction temperature for the crude GA extract for hydrolysis were pH 5.5 and 55 °C, respectively. Under this condition, the half-life of the GA extract was 315.0 minutes with a deactivation constant (k d) 2.20 × 10 ?3minutes ?1. The application of the crude GA extract for mixed food waste hydrolysis and glucose production was successfully demonstrated. Approximately 53 g glucose was recovered from 100 g of mixed food waste in 1 h under the optimal digestion conditions, highlighting the potential of this approach as an alternative strategy for waste management and sustainable production of glucose applicable as carbon source in many biotechnological processes.

References

[1]  Hong Kong SAR Environmental Protection Department. Monitoring of solid waste in Hong Kong – waste statistics for 2011, in Hong Kong 2011. Available online: https://www.wastereduction.gov.hk/en/materials/info/msw2011.pdf (accessed on 21 June 2013).
[2]  Sauer, J.; Sigurskjold, B.W.; Christensen, U.; Frandsen, T.P.; Mirgorodskaya, E.; Harrison, M.; Roepstorff, P.; Svensson, B. Glucoamylase: Structure/Function relationships, and protein engineering. Biochim. Biophys. Acta 2000, 1543, 275–293.
[3]  Norouzian, D.; Akbarzadeh, A.; Scharer, J.M.; Young, M.M. Fungal glucoamylases. Biotechnol. Adv. 2006, 24, 80–85, doi:10.1016/j.biotechadv.2005.06.003.
[4]  Wang, X.Q.; Wang, Q.H.; Liu, Y.Y.; Ma, H.Z. On-Site production of crude glucoamylase for kitchen waste hydrolysis. Waste Manag. Res. 2010, 28, 539–544, doi:10.1177/0734242X09354353.
[5]  Pleissner, D.; Lam, W.C.; Sun, Z.; Lin, C.S.K. Food waste as nutrient source in heterotrophic microalgae cultivation. Bioresour. Technol. 2013, 137, 139–146, doi:10.1016/j.biortech.2013.03.088.
[6]  Sayeki, M.; Kitagawa, T.; Matsumoto, M.; Nishiyama, A.; Miyoshi, K.; Mochizuki, M.; Takasu, A.; Abe, A. Chemical composition and energy value of dried meal from food waste as feedstuff in swine and cattle. Anim. Sci. J. 2001, 72, 34–40.
[7]  Koutinas, A.A.; Wang, R.; Webb, C. Estimation of fungal growth in complex, heterogeneous culture. Biochem. Eng. J. 2003, 14, 93–100, doi:10.1016/S1369-703X(02)00154-7.
[8]  Zhang, A.Y.-Z.; Sun, Z.; Leung, C.C.J.; Han, W.; Lau, K.Y.; Li, M.; Lin, C.S.K. Valorisation of bakery waste for succinic acid production. Green Chem. 2013, 15, 690–695, doi:10.1039/c2gc36518a.
[9]  Zambare, V. Solid state fermentation of Aspergillus. oryzae for glucoamylase production on agro residues. Int. J. Life Sci. 2010, 4, 16–25, doi:10.3126/ijls.v4i0.2892.
[10]  Ganzlin, M.; Rinas, U. In-Depth analysis of the Aspergillus. niger glucoamylase (glaA) promoter performance using high-throughput screening and controlled bioreactor cultivation techniques. J. Biotechnol. 2008, 135, 266–271, doi:10.1016/j.jbiotec.2008.04.005.
[11]  Ventura, L.; González-Candelas, L.; Pérez-Gonzáez, J.A.; Ramón, D. Molecular cloning and transcriptional analysis of the Aspergillus. terreus gla1 gene encoding a glucoamylase. Appl. Environ. Microbiol. 1995, 61, 399–402.
[12]  Anto, H.; Trivedi, U.B.; Patel, K.C. Glucoamylase production by solid-state fermentation using rice flake manufacturing waste products as substrate. Bioresour. Technol. 2006, 97, 1161–1166, doi:10.1016/j.biortech.2005.05.007.
[13]  Wang, Q.; Wang, X.; Wang, X.; Ma, H. Glucoamylase production from food waste by Aspergillus. niger under submerged fermentation. Process. Biochem. 2008, 43, 280–286, doi:10.1016/j.procbio.2007.12.010.
[14]  Kareem, S.O.; Akpan, I.; Oduntan, S.B. Cowpea waste: A novel substrate for solid state production of amylase by Aspergillus. oryzae. Afr. J. Microbiol. Res. 2009, 3, 974–977.
[15]  Du, C.; Lin, S.K.C.; Koutinas, A.; Wang, R.; Dorado, P.; Webb, C. A wheat biorefining strategy based on solid-state fermentation for fermentative production of succinic acid. Bioresour. Technol. 2008, 99, 8310–8315, doi:10.1016/j.biortech.2008.03.019.
[16]  Wang, R.; Godoy, L.C.; Shaarani, S.M.; Melikoglu, M.; Koutinas, A.; Webb, C. Improving wheat flour hydrolysis by an enzyme mixture from solid state fungal fermentation. Enzyme Microb. Technol. 2009, 44, 223–228, doi:10.1016/j.enzmictec.2008.10.002.
[17]  Melikoglu, M.; Lin, C.S.K.; Webb, C. Stepwise optimisation of enzyme production in solid state fermentation of waste bread pieces. Food Bioprod. Process. 2013. in press.
[18]  Lawton, J.M.; Doonan, S. Thermal inactivation and chaperonin-mediated renaturation of mitochondrial aspartate aminotransferase. Biochem. J. 1998, 334, 219–224.
[19]  Johannes, T.W.; Woodyer, R.D.; Zhao, H. Directed evolution of a thermostable phosphite dehydrogenase for NAD(P)H regeneration. Appl. Environ. Microbiol. 2005, 71, 5728–5734, doi:10.1128/AEM.71.10.5728-5734.2005.
[20]  Allen, M.J.; Coutinho, P.M.; Ford, C.F. Stabilization of Aspergillus. awamori glucoamylase by proline substitution and combining stabilizing mutations. Protein Eng. 1998, 11, 783–788, doi:10.1093/protein/11.9.783.
[21]  Myer, R.O.; Brendemuhl, J.H.; Johnson, D.D. Evaluation of dehydrated restaurant food waste products as feedstuffs for finishing pigs. J. Anim. Sci. 1999, 77, 685–692.
[22]  Leung, C.C.J.; Cheung, A.S.Y.; Zhang, A.Y.-Z.; Lam, K.F.; Lin, C.S.K. Utilisation of waste bread for fermentative succinic acid production. Biochem. Eng. J. 2012, 65, 10–15, doi:10.1016/j.bej.2012.03.010.
[23]  Dorado, M.P.; Lin, S.K.C.; Koutinas, A.; Du, C.; Wang, R.; Webb, C. Cereal-Based biorefinery development: Utilisation of wheat milling by-products for the production of succinic acid. J. Biotechnol. 2009, 143, 51–59, doi:10.1016/j.jbiotec.2009.06.009.
[24]  Yan, S.; Yao, J.; Yao, L.; Zhi, Z.; Chen, X.; Wu, J. Fed batch enzymatic saccharification of food waste improves the sugar concentration in the hydrolysates and eventually the ethanol fermentation by Saccharomyces. Cerevisiae H058. Braz. Arch. Biol. Technol. 2012, 55, 183–192, doi:10.1590/S1516-89132012000200002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133