全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biomolecules  2013 

Decarboxylation of Pyruvate to Acetaldehyde for Ethanol Production by Hyperthermophiles

DOI: 10.3390/biom3030578

Keywords: pyruvate decarboxylase, hyperthermophiles, alcohol fermentation, alcohol dehydrogenase, pyruvate ferredoxin oxidoreductase, pyruvate, acetaldehyde, ethanol

Full-Text   Cite this paper   Add to My Lib

Abstract:

Pyruvate decarboxylase (PDC encoded by pdc) is a thiamine pyrophosphate (TPP)-containing enzyme responsible for the conversion of pyruvate to acetaldehyde in many mesophilic organisms. However, no pdc/PDC homolog has yet been found in fully sequenced genomes and proteomes of hyper/thermophiles. The only PDC activity reported in hyperthermophiles was a bifunctional, TPP- and CoA-dependent pyruvate ferredoxin oxidoreductase (POR)/PDC enzyme from the hyperthermophilic archaeon Pyrococcus furiosus. Another enzyme known to be involved in catalysis of acetaldehyde production from pyruvate is CoA-acetylating acetaldehyde dehydrogenase (AcDH encoded by mhpF and adhE). Pyruvate is oxidized into acetyl-CoA by either POR or pyruvate formate lyase (PFL), and AcDH catalyzes the reduction of acetyl-CoA to acetaldehyde in mesophilic organisms. AcDH is present in some mesophilic (such as clostridia) and thermophilic bacteria (e.g., Geobacillus and Thermoanaerobacter). However, no AcDH gene or protein homologs could be found in the released genomes and proteomes of hyperthermophiles. Moreover, no such activity was detectable from the cell-free extracts of different hyperthermophiles under different assay conditions. In conclusion, no commonly-known PDCs was found in hyperthermophiles. Instead of the commonly-known PDC, it appears that at least one multifunctional enzyme is responsible for catalyzing the non-oxidative decarboxylation of pyruvate to acetaldehyde in hyperthermophiles.

References

[1]  Wiegel, J. Temperature spans for growth: Hypothesis and discussion. FEMS Microbiol. Lett. 1990, 75, 155–169.
[2]  Charlier, D.; Droogmans, L. Microbial Life at high temperature, the challenges, the strategies. Cell. Mol. Life Sci. 2005, 62, 2974–2984, doi:10.1007/s00018-005-5251-8.
[3]  Stetter, K. History of discovery of the first hyperthermophiles. Extremophiles 2006, 10, 357–362, doi:10.1007/s00792-006-0012-7.
[4]  Lebedinsky, A.; Chernyh, N.; Bonch-Osmolovskaya, E. Phylogenetic systematics of microorganisms inhabiting thermal environments. Biochemistry (Mosc.) 2007, 72, 1299–1312, doi:10.1134/S0006297907120048.
[5]  Wagner, I.D.; Wiegel, J. Diversity of Thermophilic Anaerobes. Ann. NY Acad. Sci. 2008, 1125, 1–43, doi:10.1196/annals.1419.029.
[6]  Morozkina, E.; Slutskaya, E.; Fedorova, T.; Tugay, T.; Golubeva, L.; Koroleva, O. Extremophilic microorganisms: Biochemical adaptation and biotechnological application. Appl. Biochem. Microbiol. 2010, 46, 1–14, doi:10.1134/S0003683810010011.
[7]  Sommer, P.; Georgieva, T.; Ahring, B.K. Potential for using thermophilic anaerobic bacteria for bioethanol production from hemicellulose. Biochem. Soc. Trans. 2004, 32, 283–289, doi:10.1042/BST0320283.
[8]  Vieille, C.; Zeikus, G.J. Hyperthermophilic enzymes: Sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 2001, 65, 1–43, doi:10.1128/MMBR.65.1.1-43.2001.
[9]  Haki, G.D.; Rakshit, S.K. Developments in industrially important thermostable enzymes: A review. Bioresour. Technol. 2003, 89, 17–34, doi:10.1016/S0960-8524(03)00033-6.
[10]  Egorova, K.; Antranikian, G. Industrial relevance of thermophilic Archaea. Curr. Opin. Microbiol. 2005, 8, 649–655, doi:10.1016/j.mib.2005.10.015.
[11]  Van den Burg, B. Extremophiles as a source for novel enzymes. Curr. Opin. Microbiol. 2003, 6, 213–218, doi:10.1016/S1369-5274(03)00060-2.
[12]  Atomi, H.; Sato, T.; Kanai, T. Application of hyperthermophiles and their enzymes. Curr. Opin. Biotechnol. 2011, 22, 618–626, doi:10.1016/j.copbio.2011.06.010.
[13]  Lynd, L.R.; Wyman, C.E.; Gerngross, T.U. Biocommodity engineering. Biotechnol. Prog. 1999, 15, 777–793, doi:10.1021/bp990109e.
[14]  Zaldivar, J.; Nielsen, J.; Olsson, L. Fuel ethanol production from lignocellulose: A challenge for metabolic engineering and process integration. Appl. Microbiol. Biotechnol. 2001, 56, 17–34, doi:10.1007/s002530100624.
[15]  Mabee, W.E.; Saddler, J.N. Bioethanol from lignocellulosics: Status and perspectives in Canada. Bioresour. Technol. 2010, 101, 4806–4813, doi:10.1016/j.biortech.2009.10.098.
[16]  Dien, B.S.; Cotta, M.A.; Jeffries, T.W. Bacteria engineered for fuel ethanol production: Current status. Appl. Microbiol. Biotechnol. 2003, 63, 258–266, doi:10.1007/s00253-003-1444-y.
[17]  Buschke, N.; Sch?fer, R.; Becker, J.; Wittmann, C. Metabolic engineering of industrial platform microorganisms for biorefinery applications-optimization of substrate spectrum and process robustness by rational and evolutive strategies. Bioresour. Technol. 2012, 135, 544–554.
[18]  Jang, Y.-S.; Park, J.M.; Choi, S.; Choi, Y.J.; Seung, D.Y.; Cho, J.H.; Lee, S.Y. Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches. Biotechnol. Adv. 2012, 30, 989–1000, doi:10.1016/j.biotechadv.2011.08.015.
[19]  Taylor, M.P.; Eley, K.L.; Martin, S.; Tuffin, M.I.; Burton, S.G.; Cowan, D.A. Thermophilic ethanologenesis: Future prospects for second-generation bioethanol production. Trends Biotechnol. 2009, 27, 398–405, doi:10.1016/j.tibtech.2009.03.006.
[20]  Bustard, M.T.; Burgess, J.G.; Meeyoo, V.; Wright, P.C. Novel opportunities for marine hyperthermophiles in emerging biotechnology and engineering industries. J. Chem. Technol. Biotechnol. 2000, 75, 1095–1109, doi:10.1002/1097-4660(200012)75:12<1095::AID-JCTB327>3.0.CO;2-3.
[21]  Huber, H.; Stetter, K.O. Hyperthermophiles and their possible potential in biotechnology. J. Biotechnol. 1998, 64, 39–52, doi:10.1016/S0168-1656(98)00102-3.
[22]  Schiraldi, C.; de Rosa, M. The production of biocatalysts and biomolecules from extremophiles. Trends Biotechnol. 2002, 20, 515–521, doi:10.1016/S0167-7799(02)02073-5.
[23]  Hough, D.W.; Danson, M.J. Extremozymes. Curr. Opin. Chem. Biol. 1999, 3, 39–46, doi:10.1016/S1367-5931(99)80008-8.
[24]  Lamed, R.; Zeikus, J.G. Ethanol production by thermophilic bacteria: Relationship between fermentation product yields of and catabolic enzyme activities in Clostridium thermocellum and Thermoanaerobium brockii. J. Bacteriol. 1980, 144, 569–578.
[25]  Klapatch, T.R.; Hogsett, D.A.L.; Baskaran, S.; Pal, S.; Lynd, L.R. Organism development and characterization for ethanol production using thermophilic bacteria. Appl. Biochem. Biotechnol. 1994, 45–46, 209–223, doi:10.1007/BF02941800.
[26]  Chang, T.; Yao, S. Thermophilic, lignocellulolytic bacteria for ethanol production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2011, 92, 13–27, doi:10.1007/s00253-011-3456-3.
[27]  Zeikus, J.G.; Ben-Bassat, A.; Ng, T.K.; Lamed, R.J. Thermophilic ethanol fermentations. In Trends in the Biology of Fermentations for Fuels and Chemicals; Hollaender, A., Rabson, R., Rogers, P., Pietro, A.S., Valentine, R., Wolfe, R., Eds.; Springer: New York, NY, USA, 1981; pp. 441–461.
[28]  Demain, A.L.; Newcomb, M.; Wu, J.H.D. Cellulase, clostridia, and ethanol. Microbiol. Mol. Biol. Rev. 2005, 69, 124–154, doi:10.1128/MMBR.69.1.124-154.2005.
[29]  Barnard, D.; Casanueva, A.; Tuffin, M.; Cowan, D. Extremophiles in biofuel synthesis. Environ. Technol. 2010, 31, 871–888, doi:10.1080/09593331003710236.
[30]  Tomás, A.F.; Karag?z, P.; Karakashev, D.; Angelidaki, I. Extreme thermophilic ethanol production from rapeseed straw: Using the newly isolated Thermoanaerobacter pentosaceus and combining it with Saccharomyces cerevisiae in a two-step process. Biotechnol. Bioeng. 2013, 110, 1574–1582, doi:10.1002/bit.24813.
[31]  Shaw, A.J.; Podkaminer, K.K.; Desai, S.G.; Bardsley, J.S.; Rogers, S.R.; Thorne, P.G.; Hogsett, D.A.; Lynd, L.R. Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc. Natl. Acad. Sci. USA 2008, 105, 13769–13774, doi:10.1073/pnas.0801266105.
[32]  Yao, S.; Mikkelsen, M.J. Identification and overexpression of a bifunctional aldehyde/alcohol dehydrogenase responsible for ethanol production in Thermoanaerobacter mathranii. J. Mol. Microbiol. Biotechnol. 2010, 19, 123–133, doi:10.1159/000321498.
[33]  Svetlitchnyi, V.; Kensch, O.; Falkenhan, D.; Korseska, S.; Lippert, N.; Prinz, M.; Sassi, J.; Schickor, A.; Curvers, S. Single-step ethanol production from lignocellulose using novel extremely thermophilic bacteria. Biotechnol. Biofuels 2013, 6, 1–15, doi:10.1186/1754-6834-6-1.
[34]  Yao, S.; Mikkelsen, M. Metabolic engineering to improve ethanol production in Thermoanaerobacter mathranii. Appl. Microbiol. Biotechnol. 2010, 88, 199–208, doi:10.1007/s00253-010-2703-3.
[35]  Thompson, A.; Studholme, D.; Green, E.; Leak, D. Heterologous expression of pyruvate decarboxylase in Geobacillus thermoglucosidasius. Biotechnol. Lett. 2008, 30, 1359–1365, doi:10.1007/s10529-008-9698-1.
[36]  Cripps, R.E.; Eley, K.; Leak, D.J.; Rudd, B.; Taylor, M.; Todd, M.; Boakes, S.; Martin, S.; Atkinson, T. Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production. Metab. Eng. 2009, 11, 398–408, doi:10.1016/j.ymben.2009.08.005.
[37]  Huang, C.-Y.; Patel, B.K.; Mah, R.A.; Baresi, L. Caldicellulosiruptor owensensis sp. nov., an anaerobic, extremely thermophilic, xylanolytic bacterium. Int. J. Syst. Bacteriol. 1998, 48, 91–97, doi:10.1099/00207713-48-1-91.
[38]  Bredholt, S.; Sonne-Hansen, J.; Nielsen, P.; Mathrani, I.M.; Ahring, B.K. Caldicellulosiruptor kristjanssonii sp. nov., a cellulolytic, extremely thermophilic, anaerobic bacterium. Int. J. Syst. Bacteriol. 1999, 49, 991–996, doi:10.1099/00207713-49-3-991.
[39]  Van Niel, E.W.J.; Claassen, P.A.M.; Stams, A.J.M. Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus. Biotechnol. Bioeng. 2003, 81, 255–262, doi:10.1002/bit.10463.
[40]  Kengen, S.; de Bok, F.; van Loo, N.; Dijkema, C.; Stams, A.; de Vos, W. Evidence for the operation of a novel Embden-Meyerhof pathway that involves ADP-dependent kinases during sugar fermentation by Pyrococcus furiosus. J. Biol. Chem. 1994, 269, 17537–17541.
[41]  Ma, K.; Loessner, H.; Heider, J.; Johnson, M.; Adams, M. Effects of elemental sulfur on the metabolism of the deep-sea hyperthermophilic archaeon Thermococcus strain ES-1: Characterization of a sulfur-regulated, non-heme iron alcohol dehydrogenase. J. Bacteriol. 1995, 177, 4748–4756.
[42]  Ying, X.; Ma, K. Characterization of a zinc-containing alcohol dehydrogenase with stereoselectivity from the hyperthermophilic archaeon Thermococcus guaymasensis. J. Bacteriol. 2011, 193, 3009–3019, doi:10.1128/JB.01433-10.
[43]  Moon, Y.-J.; Kwon, J.; Yun, S.-H.; Lim, H.L.; Kim, M.-S.; Kang, S.G.; Lee, J.-H.; Choi, J.-S.; Kim, S.L.; Chung, Y.-H. Proteome analyses of hydrogen-producing hyperthermophilic archaeon Thermococcus onnurineus NA1 in different one-carbon substrate culture conditions. Mol. Cell. Proteomics 2012, doi:10.1074/mcp.M111.015420.
[44]  Fardeau, M.L.; Ollivier, B.; Patel, B.K.C.; Magot, M.; Thomas, P.; Rimbault, A.; Rocchiccioli, F.; Garcia, J.L. Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int. J. Syst. Bacteriol. 1997, 47, 1013–1019, doi:10.1099/00207713-47-4-1013.
[45]  Balk, M.; Weijma, J.; Stams, A.J.M. Thermotoga lettingae sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor. Int. J. Syst. Evol. Microbiol. 2002, 52, 1361–1368, doi:10.1099/ijs.0.02165-0.
[46]  De Vrije, T.; Bakker, R.; Budde, M.; Lai, M.; Mars, A.; Claassen, P. Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Biotechnol. Biofuels 2009, 2, e12, doi:10.1186/1754-6834-2-12.
[47]  DiPippo, J.L.; Nesbo, C.L.; Dahle, H.; Doolittle, W.F.; Birkland, N.-K.; Noll, K.M. Kosmotoga olearia gen. nov., sp. nov., a thermophilic, anaerobic heterotroph isolated from an oil production fluid. Int. J. Syst. Evol. Microbiol. 2009, 59, 2991–3000, doi:10.1099/ijs.0.008045-0.
[48]  Podosokorskaya, O.A.; Kublanov, I.V.; Reysenbach, A.L.; Kolganova, T.V.; Bonch-Osmolovskaya, E.A. Thermosipho affectus sp. nov., a thermophilic, anaerobic, cellulolytic bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent. Int. J. Syst. Evol. Microbiol. 2011, 61, 1160–1164, doi:10.1099/ijs.0.025197-0.
[49]  Reid, M.F.; Fewson, C.A. Molecular characterization of microbial alcohol dehydrogenases. Crit. Rev. Microbiol. 1994, 20, 13–56, doi:10.3109/10408419409113545.
[50]  Littlechild, J.A.; Guy, J.E.; Isupov, M.N. Hyperthermophilic dehydrogenase enzymes. Biochem. Soc. Trans. 2004, 32, 255–258, doi:10.1042/BST0320255.
[51]  Radianingtyas, H.; Wright, P.C. Alcohol dehydrogenases from thermophilic and hyperthermophilic archaea and bacteria. FEMS Microbiol. Rev. 2003, 27, 593–616, doi:10.1016/S0168-6445(03)00068-8.
[52]  Korkhin, Y.; Kalb, A.J.; Peretz, M.; Bogin, O.; Burstein, Y.; Frolow, F. NADP-dependent bacterial alcohol dehydrogenases: Crystal structure, cofactor-binding and cofactor specificity of the ADHs of Clostridium beijerinckii and Thermoanaerobacter brockii. J. Mol. Biol. 1998, 278, 967–981, doi:10.1006/jmbi.1998.1750.
[53]  Machielsen, R.; Uria, A.R.; Kengen, S.W.M.; van der Oost, J. Production and characterization of a thermostable alcohol dehydrogenase that belongs to the aldo-keto reductase superfamily. Appl. Environ. Microbiol. 2006, 72, 233–238, doi:10.1128/AEM.72.1.233-238.2006.
[54]  Van der Oost, J.; Voorhorst, W.G.B.; Kengen, S.W.M.; Geerling, A.C.M.; Wittenhorst, V.; Gueguen, Y.; de Vos, W.M. Genetic and biochemical characterization of a short-chain alcohol dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus. Eur. J. Biochem. 2001, 268, 3062–3068, doi:10.1046/j.1432-1327.2001.02201.x.
[55]  Antoine, E.; Rolland, J.-L.; Raffin, J.-P.; Dietrich, J. Cloning and over-expression in Escherichia coli of the gene encoding NADPH group III alcohol dehydrogenase from Thermococcus hydrothermalis. Eur. J. Biochem. 1999, 264, 880–889, doi:10.1046/j.1432-1327.1999.00685.x.
[56]  Bashir, Q.; Rashid, N.; Jamil, F.; Imanaka, T.; Akhtar, M. Highly thermostable l-threonine dehydrogenase from the hyperthermophilic archaeon Thermococcus kodakaraensis. J. Biochem. (Tokyo) 2009, 146, 95–102, doi:10.1093/jb/mvp051.
[57]  Bowyer, A.; Mikolajek, H.; Stuart, J.W.; Wood, S.P.; Jamil, F.; Rashid, N.; Akhtar, M.; Cooper, J.B. Structure and function of the l-threonine dehydrogenase (TkTDH) from the hyperthermophilic archaeon Thermococcus kodakaraensis. J. Struct. Biol. 2009, 168, 294–304, doi:10.1016/j.jsb.2009.07.011.
[58]  Wu, X.; Zhang, C.; Orita, I.; Imanaka, T.; Fukui, T.; Xing, X.-H. Thermostable alcohol dehydrogenase from Thermococcus kodakarensis KOD1 for enantioselective bioconversion of aromatic secondary alcohols. Appl. Environ. Microbiol. 2013, 79, 2209–2217, doi:10.1128/AEM.03873-12.
[59]  Stekhanova, T.N.; Mardanov, A.V.; Bezsudnova, E.Y.; Gumerov, V.M.; Ravin, N.V.; Skryabin, K.G.; Popov, V.O. Characterization of a thermostable short-chain alcohol dehydrogenase from the hyperthermophilic archaeon Thermococcus sibiricus. Appl. Environ. Microbiol. 2010, 76, 4096–4098, doi:10.1128/AEM.02797-09.
[60]  Lyashenko, A.V.; Bezsudnova, E.Y.; Gumerov, V.M.; Lashkov, A.A.; Mardanov, A.V.; Mikhailov, A.M.; Polyakov, K.M.; Popov, V.O.; Ravin, N.V.; Skryabin, K.G.; et al. Expression, purification and crystallization of a thermostable short-chain alcohol dehydrogenase from the archaeon Thermococcus sibiricus. Acta Crystallogr. F Struct. Biol. Cryst. Commun. 2010, 66, 655–657, doi:10.1107/S1744309110002654.
[61]  Pennacchio, A.; Giordano, A.; Pucci, B.; Rossi, M.; Raia, C. Biochemical characterization of a recombinant short-chain NAD(H)-dependent dehydrogenase/reductase from Sulfolobus acidocaldarius. Extremophiles 2010, 14, 193–204, doi:10.1007/s00792-009-0298-3.
[62]  Ying, X.; Grunden, A.; Nie, L.; Adams, M.; Ma, K. Molecular characterization of the recombinant iron-containing alcohol dehydrogenase from the hyperthermophilic Archaeon, Thermococcus strain ES1. Extremophiles 2009, 13, 299–311, doi:10.1007/s00792-008-0217-z.
[63]  Guy, J.E.; Isupov, M.N.; Littlechild, J.A. The structure of an alcohol dehydrogenase from the hyperthermophilic archaeon Aeropyrum pernix. J. Mol. Biol. 2003, 331, 1041–1051, doi:10.1016/S0022-2836(03)00857-X.
[64]  Ying, X.; Wang, Y.; Badiei, H.; Karanassios, V.; Ma, K. Purification and characterization of an iron-containing alcohol dehydrogenase in extremely thermophilic bacterium Thermotoga hypogea. Arch. Microbiol. 2007, 187, 499–510, doi:10.1007/s00203-007-0217-x.
[65]  Vitale, A.; Thorne, N.; Lovell, S.; Battaile, K.P.; Hu, X.; Shen, M.; D’Auria, S.; Auld, D.S. Physicochemical characterization of a thermostable alcohol dehydrogenase from Pyrobaculum aerophilum. PLoS One 2013, 8, e63828.
[66]  Verhees, C.H.; Kengen, S.W.M.; Tuininga, J.E.; Schut, G.J.; Adams, M.W.W.; de Vos, W.M.; van der Oost, J. The unique features of glycolytic pathways in Archaea. Biochem. J. 2003, 375, 231–246, doi:10.1042/BJ20021472.
[67]  Siebers, B.; Sch?nheit, P. Unusual pathways and enzymes of central carbohydrate metabolism in Archaea. Curr. Opin. Microbiol. 2005, 8, 695–705, doi:10.1016/j.mib.2005.10.014.
[68]  Buchholz, S.E.; Dooley, M.M.; Eveleigh, D.E. Zymomonas—An alcoholic enigma. Trends Biotechnol. 1987, 5, 199–204, doi:10.1016/S0167-7799(87)80008-2.
[69]  Canale-Parola, E. Biology of the sugar-fermenting Sarcinae. Microbiol. Mol. Biol. Rev. 1970, 34, 82–97.
[70]  Duggleby, R.G. Domain relationships in thiamine diphosphate-dependent enzymes. Acc. Chem. Res. 2006, 39, 550–557, doi:10.1021/ar068022z.
[71]  Costelloe, S.; Ward, J.; Dalby, P. Evolutionary analysis of the TPP-dependent enzyme family. J. Mol. Evol. 2008, 66, 36–49, doi:10.1007/s00239-007-9056-2.
[72]  Kluger, R.; Tittmann, K. Thiamin diphosphate catalysis: Enzymic and nonenzymic covalent intermediates. Chem. Rev. 2008, 108, 1797–1833, doi:10.1021/cr068444m.
[73]  Schellenberger, A. Sixty years of thiamin diphosphate biochemistry. Biochim. Biophys. Acta 1998, 1385, 177–186, doi:10.1016/S0167-4838(98)00067-3.
[74]  Iding, H.; Siegert, P.; Mesch, K.; Pohl, M. Application of alpha-keto acid decarboxylases in biotransformations. Biochim. Biophys. Acta 1998, 1385, 307–322, doi:10.1016/S0167-4838(98)00076-4.
[75]  Bringer-Meyer, S.; Schimz, K.L.; Sahm, H. Pyruvate decarboxylase from Zymomonas mobilis. Isolation and partial characterization. Arch. Microbiol. 1986, 146, 105–110, doi:10.1007/BF00402334.
[76]  Raj, K.C.; Ingram, L.O.; Maupin-Furlow, J.A. Pyruvate decarboxylase: A key enzyme for the oxidative metabolism of lactic acid by Acetobacter pasteurianus. Arch. Microbiol. 2001, 176, 443–451, doi:10.1007/s002030100348.
[77]  Raj, K.C.; Talarico, L.A.; Ingram, L.O.; Maupin-Furlow, J.A. Cloning and characterization of the Zymobacter palmae pyruvate decarboxylase gene (pdc) and comparison to bacterial homologues. Appl. Environ. Microbiol. 2002, 68, 2869–2876, doi:10.1128/AEM.68.6.2869-2876.2002.
[78]  Talarico, L.A.; Ingram, L.O.; Maupin-Furlow, J.A. Production of the Gram-positive Sarcina ventriculi pyruvate decarboxylase in Escherichia coli. Microbiology 2001, 147, 2425–2435.
[79]  Wang, Q.; He, P.; Lu, D.; Shen, A.; Jiang, N. Purification, characterization, cloning and expression of pyruvate decarboxylase from Torulopsis glabrata IFO005. J. Biochem. (Tokyo) 2004, 136, 447–455, doi:10.1093/jb/mvh141.
[80]  Ma, K.; Hutchins, A.; Sung, S.-J.S.; Adams, M.W.W. Pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon, Pyrococcus furiosus, functions as a CoA-dependent pyruvate decarboxylase. Proc. Natl. Acad. Sci. USA 1997, 94, 9608–9613.
[81]  Dobritzsch, D.; Konig, S.; Schneider, G.; Lu, G. High resolution crystal structure of pyruvate decarboxylase from Zymomonas mobilis. Implications for substrate activation in pyruvate decarboxylases. J. Biol. Chem. 1998, 273, 20196–20204, doi:10.1074/jbc.273.32.20196.
[82]  Jordan, F. Current mechanistic understanding of thiamin diphosphate-dependent enzymatic reactions. Nat. Prod. Rep. 2003, 20, 184–201, doi:10.1039/b111348h.
[83]  Kluger, R. Thiamin diphosphate: A mechanistic update on enzymic and nonenzymic catalysis of decarboxylation. Chem. Rev. 1987, 87, 863–876, doi:10.1021/cr00081a001.
[84]  Candy, J.M.; Duggleby, R.G. Structure and properties of pyruvate decarboxylase and site-directed mutagenesis of the Zymomonas mobilis enzyme. Biochim. Biophys. Acta 1998, 1385, 323–338, doi:10.1016/S0167-4838(98)00077-6.
[85]  Kutter, S.; Weiss, M.S.; Wille, G.; Golbik, R.; Spinka, M.; K?nig, S. Covalently bound substrate at the regulatory site of yeast pyruvate decarboxylases triggers allosteric enzyme activation. J. Biol. Chem. 2009, 284, 12136–12144.
[86]  Siegert, P.; McLeish, M.J.; Baumann, M.; Iding, H.; Kneen, M.M.; Kenyon, G.L.; Pohl, M. Exchanging the substrate specificities of pyruvate decarboxylase from Zymomonas mobilis and benzoylformate decarboxylase from Pseudomonas putida. Protein Eng. Des. Sel. 2005, 18, 345–357, doi:10.1093/protein/gzi035.
[87]  rjunan, P.; Umland, T.; Dyda, F.; Swaminathan, S.; Furey, W.; Sax, M.; Farrenkopf, B.; Gao, Y.; Zhang, D.; Jordan, F. Crystal structure of the thiamin diphosphate-dependent enzyme pyruvate decarboxylase from the yeast Saccharomyces cerevisiae at 2.3 ? resolution. J. Mol. Biol. 1996, 256, 590–600, doi:10.1006/jmbi.1996.0111.
[88]  Pohl, M. Protein design on pyruvate decarboxylase (PDC) by site-directed mutagenesis. Adv. Biochem. Eng. Biotechnol. 1997, 58, 15–43.
[89]  Liu, M.; Sergienko, E.A.; Guo, F.; Wang, J.; Tittmann, K.; Hubner, G.; Furey, W.; Jordan, F. Catalytic acid-base groups in yeast pyruvate decarboxylase. 1. Site-directed mutagenesis and steady-state kinetic studies on the enzyme with the D28A, H114F, H115F, and E477Q substitutions. Biochemistry (Mosc.) 2001, 40, 355–7368.
[90]  Schenk, G.; Layfield, R.; Candy, J.M.; Duggleby, R.G.; Nixon, P.F. Molecular evolutionary analysis of the thiamine-diphosphate-dependent enzyme, transketolase. J. Mol. Evol. 1997, 44, 552–572, doi:10.1007/PL00006179.
[91]  Raeburn, S.; Rabinowitz, J.C. Pyruvate: Ferredoxin oxidoreductase: II. Characteristics of the forward and reverse reactions and properties of the enzyme. Arch. Biochem. Biophys. 1971, 146, 21–33, doi:10.1016/S0003-9861(71)80037-1.
[92]  Uyeda, K.; Rabinowitz, J.C. Pyruvate-ferredoxin oxidoreductase. IV. Studies on the reaction mechanism. J. Biol. Chem. 1971, 246, 3120–3125.
[93]  Uyeda, K.; Rabinowitz, J.C. Pyruvate-ferredoxin oxidoreductase. III. Purification and properties of the enzyme. J. Biol. Chem. 1971, 246, 3111–3119.
[94]  Ragsdale, S.W. Pyruvate ferredoxin oxidoreductase and its radical intermediate. Chem. Rev. 2003, 103, 2333–2346, doi:10.1021/cr020423e.
[95]  Ragsdale, S.W.; Pierce, E. Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochim. Biophys. Acta 2008, 1784, 1873–1898, doi:10.1016/j.bbapap.2008.08.012.
[96]  Tittmann, K. Reaction mechanisms of thiamin diphosphate enzymes: Redox reactions. FEBS J. 2009, 276, 2454–2468, doi:10.1111/j.1742-4658.2009.06966.x.
[97]  Kletzin, A.; Adams, M. Molecular and phylogenetic characterization of pyruvate and 2- ketoisovalerate ferredoxin oxidoreductases from Pyrococcus furiosus and pyruvate ferredoxin oxidoreductase from Thermotoga maritima. J. Bacteriol. 1996, 178, 248–257.
[98]  Zhang, Q.; Iwasaki, T.; Wakagi, T.; Oshima, T. 2-Oxoacid: Ferredoxin oxidoreductase from the thermoacidophilic archaeon, Sulfolobus sp. strain 7. J. Biochem. (Tokyo) 1996, 120, 587–599, doi:10.1093/oxfordjournals.jbchem.a021454.
[99]  Townson, S.M.; Upcroft, J.A.; Upcroft, P. Characterisation and purification of pyruvate: Ferredoxin oxidoreductase from Giardia duodenalis. Mol. Biochem. Parasitol. 1996, 79, 183–193, doi:10.1016/0166-6851(96)02661-8.
[100]  Horner, D.S.; Hirt, R.P.; Embley, T.M. A single eubacterial origin of eukaryotic pyruvate: Ferredoxin oxidoreductase genes: Implications for the evolution of anaerobic eukaryotes. Mol. Biol. Evol. 1999, 16, 1280–1291, doi:10.1093/oxfordjournals.molbev.a026218.
[101]  Pineda, E.; Encalada, R.; Rodríguez-Zavala, J.S.; Olivos-García, A.; Moreno-Sánchez, R.; Saavedra, E. Pyruvate: Ferredoxin oxidoreductase and bifunctional aldehyde-alcohol dehydrogenase are essential for energy metabolism under oxidative stress in Entamoeba histolytica. FEBS J. 2010, 277, 3382–3395, doi:10.1111/j.1742-4658.2010.07743.x.
[102]  Wahl, R.C.; Orme-Johnson, W.H. Clostridial pyruvate oxidoreductase and the pyruvate-oxidizing enzyme specific to nitrogen fixation in Klebsiella pneumoniae are similar enzymes. J. Biol. Chem. 1987, 262, 10489–10496.
[103]  Meinecke, B.; Bertram, J.; Gottschalk, G. Purification and characterization of the pyruvate-ferredoxin oxidoreductase from Clostridium acetobutylicum. Arch. Microbiol. 1989, 152, 244–250, doi:10.1007/BF00409658.
[104]  Pieulle, L.; Magro, V.; Hatchikian, E. Isolation and analysis of the gene encoding the pyruvate-ferredoxin oxidoreductase of Desulfovibrio africanus, production of the recombinant enzyme in Escherichia coli, and effect of carboxy-terminal deletions on its stability. J. Bacteriol. 1997, 179, 5684–5692.
[105]  Pieulle, L.; Guigliarelli, B.; Asso, M.; Dole, F.; Bernadac, A.; Hatchikian, E.C. Isolation and characterization of the pyruvate-ferredoxin oxidoreductase from the sulfate-reducing bacterium Desulfovibrio africanus. Biochim. Biophys. Acta 1995, 1250, 49–59, doi:10.1016/0167-4838(95)00029-T.
[106]  Pieulle, L.; Charon, M.-H.; Bianco, P.; Bonicel, J.; Petillot, Y.; Hatchikian, E.C. Structural and kinetic studies of the pyruvate-ferredoxin oxidoreductase/ferredoxin complex from Desulfovibrio africanus. Eur. J. Biochem. 1999, 264, 500–508, doi:10.1046/j.1432-1327.1999.00648.x.
[107]  Pieulle, L.; Chabriere, E.; Hatchikian, C.; Fontecilla-Camps, J.C.; Charon, M.-H. Crystallization and preliminary crystallographic analysis of the pyruvate-ferredoxin oxidoreductase from Desulfovibrio africanus. Acta Crystallogr. D Biol. Crystallogr. 1999, 55, 329–331, doi:10.1107/S0907444998008920.
[108]  Blamey, J.M.; Adams, M.W. Characterization of an ancestral type of pyruvate ferredoxin oxidoreductase from the hyperthermophilic bacterium, Thermotoga maritima. Biochemistry (Mosc.) 1994, 33, 1000–1007.
[109]  Blamey, J.M.; Adams, M.W.W. Purification and characterization of pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus. Biochim. Biophys. Acta 1993, 1161, 19–27, doi:10.1016/0167-4838(93)90190-3.
[110]  Kunow, J.; Linder, D.; Thauer, R.K. Pyruvate: Ferredoxin oxidoreductase from the sulfate-reducing Archaeoglobus fulgidus: Molecular composition, catalytic properties, and sequence alignments. Arch. Microbiol. 1995, 163, 21–28.
[111]  Bock, A.-K.; Prieger-Kraft, A.; Sch?nheit, P. Pyruvate a novel substrate for growth and methane formation in Methanosarcina barkeri. Arch. Microbiol. 1994, 161, 33–46.
[112]  Bock, A.K.; Kunow, J.; Glasemacher, J.; Sch?nheit, P. Catalytic properties, molecular composition and sequence alignments of pyruvate: Ferredoxin oxidoreductase from the methanogenic archaeon Methanosarcina Barkeri (Strain Fusaro). Eur. J. Biochem. 1996, 237, 35–44.
[113]  Tersteegen, A.; Dietmar, L.R.K.; Thauer, R.H. Structures and functions of four anabolic 2-oxoacid oxidoreductases in Methanobacterium thermoautotrophicum. Eur. J. Biochem. 1997, 244, 862–868.
[114]  Chabrière, E.; Vernede, X.; Guigliarelli, B.; Charon, M.-H.; Hatchikian, E.C.; Fontecilla-Camps, J.C. Crystal structure of the free radical intermediate of pyruvate:ferredoxin oxidoreductase. Science 2001, 294, 2559–2563, doi:10.1126/science.1066198.
[115]  Chabrière, E.; Charon, M.-H.; Volbeda, A.; Pieulle, L.; Hatchikian, E.C.; Fontecilla-Camps, J.-C. Crystal structures of the key anaerobic enzyme pyruvate: Ferredoxin oxidoreductase, free and in complex with pyruvate. Nat. Struct. Mol. Biol. 1999, 6, 182–190, doi:10.1038/5870.
[116]  Garczarek, F.; Dong, M.; Typke, D.; Witkowska, H.E.; Hazen, T.C.; Nogales, E.; Biggin, M.D.; Glaeser, R.M. Octomeric pyruvate-ferredoxin oxidoreductase from Desulfovibrio vulgaris. J. Struct. Biol. 2007, 159, 9–18, doi:10.1016/j.jsb.2007.01.020.
[117]  Bock, A.-K.; Sch?nheit, P.; Teixeira, M. The iron-sulfur centers of the pyruvate:ferredoxin oxidoreductase from Methanosarcina barkeri (Fusaro). FEBS Lett. 1997, 414, 209–212, doi:10.1016/S0014-5793(97)00998-8.
[118]  Charon, M.-H.; Volbeda, A.; Chabriere, E.; Pieulle, L.; Fontecilla-Camps, J.C. Structure and electron transfer mechanism of pyruvate: Ferredoxin oxidoreductase. Curr. Opin. Struct. Biol. 1999, 9, 663–669, doi:10.1016/S0959-440X(99)00027-5.
[119]  Shiba, H.; Kawasumi, T.; Igarashi, Y.; Kodama, T.; Minoda, Y. The CO2 assimilation via. the reductive tricarboxylic acid cycle in an obligately autotrophic, aerobic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus. Arch. Microbiol. 1985, 141, 198–203.
[120]  Ikeda, T.; Ochiai, T.; Morita, S.; Nishiyama, A.; Yamada, E.; Arai, H.; Ishii, M.; Igarashi, Y. Anabolic five subunit-type pyruvate: Ferredoxin oxidoreductase from Hydrogenobacter thermophilus TK-6. Biochem. Biophys. Res. Commun. 2006, 340, 76–82, doi:10.1016/j.bbrc.2005.11.155.
[121]  Ikeda, T.; Yamamoto, M.; Arai, H.; Ohmori, D.; Ishii, M.; Igarashi, Y. Enzymatic and electron paramagnetic resonance studies of anabolic pyruvate synthesis by pyruvate: Ferredoxin oxidoreductase from Hydrogenobacter thermophilus. FEBS J. 2010, 277, 501–510, doi:10.1111/j.1742-4658.2009.07506.x.
[122]  Yamamoto, M.; Ikeda, T.; Arai, H.; Ishii, M.; Igarashi, Y. Carboxylation reaction catalyzed by 2-oxoglutarate: Ferredoxin oxidoreductases from Hydrogenobacter thermophilus. Extremophiles 2010, 14, 79–85, doi:10.1007/s00792-009-0289-4.
[123]  Lin, W.C.; Yang, Y.-L.; Whitman, W.B. The anabolic pyruvate oxidoreductase from Methanococcus maripaludis. Arch. Microbiol. 2003, 179, 444–456.
[124]  Lin, W.; Whitman, W. The importance of porE and porF in the anabolic pyruvate oxidoreductase of Methanococcus maripaludis. Arch. Microbiol. 2004, 181, 68–73, doi:10.1007/s00203-003-0629-1.
[125]  Imlay, A.J. Iron-sulphur clusters and the problem with oxygen. Mol. Microbiol. 2006, 59, 1073–1082, doi:10.1111/j.1365-2958.2006.05028.x.
[126]  Linn, T.C.; Pettit, F.H.; Reed, L.J. α-Keto acid dehydrogenase complexes, X. Regulation of the activity of the pyruvate dehydrogenase complex from beef kidney mitochondria by phosphorylation and dephosphorylation. Proc. Natl. Acad. Sci. USA 1969, 62, 234–241, doi:10.1073/pnas.62.1.234.
[127]  Patel, M.S.; Roche, T.E. Molecular biology and biochemistry of pyruvate dehydrogenase complexes. FASEB J. 1990, 4, 3224–3233.
[128]  Witzmann, S.; Bisswanger, H. The pyruvate dehydrogenase complex from thermophilic organisms: Thermal stability and re-association from the enzyme components. Biochim. Biophys. Acta 1998, 1385, 341–352, doi:10.1016/S0167-4838(98)00078-8.
[129]  Potter, S.; Fothergill-Gilmore, L.A. Purification and properties of pyruvate kinase from Thermoplasma acidophilum. FEMS Microbiol. Lett. 1992, 94, 235–239, doi:10.1111/j.1574-6968.1992.tb05324.x.
[130]  Heath, C.; Jeffries, A.C.; Hough, D.W.; Danson, M.J. Discovery of the catalytic function of a putative 2-oxoacid dehydrogenase multienzyme complex in the thermophilic archaeon Thermoplasma acidophilum. FEBS Lett. 2004, 577, 523–527, doi:10.1016/j.febslet.2004.10.058.
[131]  Selig, M.; Sch?nheit, P. Oxidation of organic compounds to CO2 with sulfur or thiosulfate as electron acceptor in the anaerobic hyperthermophilic archaea Thermoproteus tenax and Pyrobaculum islandicum proceeds via. the citric acid cycle. Arch. Microbiol. 1994, 162, 286–294, doi:10.1007/BF00301853.
[132]  Ma, K.; Weiss, R.; Adams, M.W.W. Characterization of hydrogenase II from the hyperthermophilic archaeon Pyrococcus furiosus and assessment of its role in sulfur reduction. J. Bacteriol. 2000, 182, 1864–1871, doi:10.1128/JB.182.7.1864-1871.2000.
[133]  Jenney, F.E.; Adams, M.W.W. Hydrogenases of the model hyperthermophiles. Ann. NY Acad. Sci. 2008, 1125, 252–266, doi:10.1196/annals.1419.013.
[134]  Rudolph, F.B.; Purich, D.L.; Fromm, H.J. Coenzyme A-linked aldehyde dehydrogenase from Escherichia coli. J. Biol. Chem. 1968, 243, 5539–5545.
[135]  Lurz, R.; Mayer, F.; Gottschalk, G. Electron microscopic study on the quaternary structure of the isolated particulate alcohol-acetaldehyde dehydrogenase complex and on its identity with the polygonal bodies of Clostridium kluyveri. Arch. Microbiol. 1979, 120, 255–262, doi:10.1007/BF00423073.
[136]  Nair, R.V.; Bennett, G.N.; Papoutsakis, E.T. Molecular characterization of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824. J. Bacteriol. 1994, 176, 871–885.
[137]  Tóth, J.; Ismaiel, A.A.; Chen, J.-S. The ald gene, encoding a coenzyme A-acylating aldehyde dehydrogenase, distinguishes Clostridium beijerinckii and two other solvent-producing clostridia from Clostridium acetobutylicum. Appl. Environ. Microbiol. 1999, 65, 4973–4980.
[138]  Sánchez, L.B. Aldehyde dehydrogenase (CoA-acetylating) and the mechanism of ethanol formation in the amitochondriate protist, Giardia lamblia. Arch. Biochem. Biophys. 1998, 354, 57–64, doi:10.1006/abbi.1998.0664.
[139]  Bruchhaus, I.; Tannich, E. Purification and molecular characterization of the NAD(+)-dependent acetaldehyde/alcohol dehydrogenase from Entamoeba histolytica. Biochem. J. 1994, 303, 743–748.
[140]  Burdette, D.; Zeikus, J.G. Purification of acetaldehyde dehydrogenase and alcohol dehydrogenases from Thermoanaerobacter ethanolicus 39E and characterization of the secondary-alcohol dehydrogenase (2 degrees Adh) as a bifunctional alcohol dehydrogenase--acetyl-CoA reductive thioesterase. Biochem. J. 1994, 302, 163–170.
[141]  Brown, S.D.; Guss, A.M.; Karpinets, T.V.; Parks, J.M.; Smolin, N.; Yang, S.; Land, M.L.; Klingeman, D.M.; Bhandiwad, A.; Rodriguez, M. Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum. Proc. Natl. Acad. Sci. USA 2011, 108, 13752–13757, doi:10.1073/pnas.1102444108.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133