全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biomolecules  2013 

A Sensitive DNA Enzyme-Based Fluorescent Assay for Bacterial Detection

DOI: 10.3390/biom3030563

Keywords: bacterial detection, DNAzyme, fluorescence, biosensor, Escherichia coli

Full-Text   Cite this paper   Add to My Lib

Abstract:

Bacterial detection plays an important role in protecting public health and safety, and thus, substantial research efforts have been directed at developing bacterial sensing methods that are sensitive, specific, inexpensive, and easy to use. We have recently reported a novel “mix-and-read” assay where a fluorogenic DNAzyme probe was used to detect model bacterium E. coli. In this work, we carried out a series of optimization experiments in order to improve the performance of this assay. The optimized assay can achieve a detection limit of 1000 colony-forming units (CFU) without a culturing step and is able to detect 1 CFU following as short as 4 h of bacterial culturing in a growth medium. Overall, our effort has led to the development of a highly sensitive and easy-to-use fluorescent bacterial detection assay that employs a catalytic DNA.

References

[1]  World Health Organization (WHO). Fact sheet N?237. Available online: https://apps.who.int/inf-fs/en/fact237.html (accessed on 16 August 2013).
[2]  Osterholm, M.T. Foodborne disease in 2011 — The rest of the story. N. Engl. J. Med. 2011, 364, 889–891, doi:10.1056/NEJMp1010907.
[3]  Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.A.; Roy, S.L.; Griffin, P.M. Foodborne illness acquired in the United States-major pathogens. Emerg. Infect. Dis. 2011, 17, 7–15.
[4]  Newell, D.G.; Koopmans, M.; Verhoef, L.; Duizer, E.; Aidara-Kane, A.; Sprong, H.; Opsteegh, M.; Langelaar, M.; Threfall, J.; Scheutz, F.; et al. Food-borne diseases - the challenges of 20 years ago still persist while new ones continue to emerge. Int. J. Food Microbiol. 2010, 139, S3–S15.
[5]  Zourob, M.; Elwary, S.; Turner, A. Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems; Springer: New York, NY, USA, 2008.
[6]  Velusamy, V.; Arshak, K.; Korostynska, O.; Oliwa, K.; Adley, C. An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnol. Adv. 2010, 28, 232–254, doi:10.1016/j.biotechadv.2009.12.004.
[7]  Lazcka, O.; Campo, F.J.D.; Mu?oz, F.X. Pathogen detection: A perspective of traditional methods and biosensors. Biosens. Bioelectron. 2007, 22, 1205–1217, doi:10.1016/j.bios.2006.06.036.
[8]  Wright, A.C.; Danyluk, M.D.; Otwell, W.S. Pathogens in raw foods: What the salad bar can learn from the raw bar. Curr. Opin. Biotechnol. 2009, 20, 172–177, doi:10.1016/j.copbio.2009.03.006.
[9]  Call, D.R. Challenges and opportunities for pathogen detections using DNA microarrays. Crit. Rev. Microbiol. 2005, 31, 91–99, doi:10.1080/10408410590921736.
[10]  Yagi, K. Applications of whole-cell bacterial sensors in biotechnology and environmental science. Appl. Microbiol. Biotechnol. 2007, 73, 1251–1258, doi:10.1007/s00253-006-0718-6.
[11]  Laberge, I.; Griffiths, M.W. Prevalence, detection and control of Cryptosporidium parvum in food. Int. J. Food Microbiol. 1996, 32, 1–26, doi:10.1016/0168-1605(96)00977-4.
[12]  Ali, M.M.; Aguirre, S.D.; Lazim, H.; Li, Y. Fluorogenic DNAzyme probes as bacterial indicators. Angew. Chem. Int. Ed. 2011, 50, 3751–3754, doi:10.1002/anie.201100477.
[13]  Aguirre, S.D.; Ali, M.M.; Li, Y. Detection of bacteria using fluorogenic DNAzymes. J. Vis. Exp. 2012, e3961, doi:10.3791/3961.
[14]  Li, Y. Advancements in using reporter DNAzymes for identifying pathogenic bacteria at speed and with convenience. Future Microbiol. 2011, 6, 973–976, doi:10.2217/fmb.11.79.
[15]  Mei, S.H.; Liu, Z.; Brennan, J.D.; Li, Y. An efficient RNA-cleaving DNA enzyme that synchronizes catalysis with fluorescence signaling. J. Am. Chem. Soc. 2003, 125, 412–420, doi:10.1021/ja0281232.
[16]  Liu, Z.; Mei, S.H.; Brennan, J.D.; Li, Y. Assemblage of signalling DNA enzymes with intriguing metal specificity and pH dependences. J. Am. Chem. Soc. 2003, 125, 7539–7545.
[17]  Shen, Y.; Brennan, J.D.; Li, Y. Characterizing the secondary structure and identifying functionally essential nucleotides of pH6DZ1, a fluorescence-signaling and RNA-cleaving deoxyribozyme. Biochemistry 2005, 44, 12066–12076, doi:10.1021/bi050746f.
[18]  Kandadai, S.A.; Li, Y. Characterization of a catalytically efficient acidic RNA-cleaving deoxyribozyme. Nucleic Acids Res. 2006, 33, 7164–7175, doi:10.1093/nar/gki1013.
[19]  Shen, Y.; Chiuman, W.; Brennan, J.D.; Li, Y. Catalysis and rational engineeringof trans-acting pH6DZ1, an RNA-cleaving and fluorescence-signaling deoxyribozyme with a four-way junction structure. ChemBioChem 2006, 7, 1343–1348, doi:10.1002/cbic.200600195.
[20]  Ali, M.M.; Kandadai, S.A.; Li, Y. Characterization of pH3DZ1—An RNA-Cleaving deoxyribozyme with optimal activity at pH 3. Can. J. Chem. 2007, 85, 261–273, doi:10.1139/v07-017.
[21]  Kandadai, S.A.; Mok, W.W.K.; Ali, M.M.; Li, Y. Characterization and optimization of an RNA-cleaving deoxyribozyme active at pH 5. Biochemistry 2009, 48, 7383–7391, doi:10.1021/bi900631u.
[22]  Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990, 249, 505–510.
[23]  Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346, 818–822, doi:10.1038/346818a0.
[24]  Joyce, G.F. Forty years of in vitro evolution. Angew. Chem. Int. Ed. 2007, 46, 6420–6436, doi:10.1002/anie.200701369.
[25]  Okumoto, Y.; Sugimoto, N. Effects of metal ions and catalytic loop sequences on the complex formation of a deoxyribozyme and its RNA substrate. J. Inorg. Biochem. 2000, 82, 189–195, doi:10.1016/S0162-0134(00)00159-8.
[26]  He, Q.C.; Zhou, J.M.; Zhou, D.M.; Nakamatsu, Y.; Baba, T.; Taira, K. Comparison of metal-ion-dependent cleavages of RNA by a DNA enzyme and a hammerheadribozyme. Biomacromolecules 2002, 3, 69–83, doi:10.1021/bm010095c.
[27]  Brown, A.K.; Li, J.; Pavot, C.M.; Lu, Y. A lead-dependent DNAzyme with a two-step mechanism. Biochemistry 2003, 42, 7152–7161, doi:10.1021/bi027332w.
[28]  Lan, T.; Lu, Y. Metal ion-dependent DNAzymes and their applications as biosensors. Met. Ions Life Sci. 2012, 10, 217–248, doi:10.1007/978-94-007-2172-2_8.
[29]  Santoro, S.W.; Joyce, G.F. A general purpose RNA-cleaving DNA enzyme. Proc. Natl. Acad. Sci. USA 1997, 94, 4262–4266, doi:10.1073/pnas.94.9.4262.
[30]  Li, J.; Zheng, W.; Kwon, A.H.; Lu, Y. In vitro selection and characterization of a highly efficient Zn(II)-dependent RNA-cleaving deoxyribozyme. Nucleic Acids Res. 2000, 28, 481–488, doi:10.1093/nar/28.2.481.
[31]  Kim, H.K.; Liu, J.; Li, J.; Nagraj, N.; Li, M.; Pavot, C.M.; Lu, Y. Metal-dependent global folding and activity of the 8-17 DNAzyme studied byfluorescence resonance energy transfer. J. Am. Chem. Soc. 2007, 129, 6896–6902, doi:10.1021/ja0712625.
[32]  Rupcich, N.; Chiuman, W.; Nutiu, R.; Mei, S.; Flora, K.K.; Li, Y.; Brennan, J.D. Quenching of fluorophore-labeled DNA oligonucleotides by divalent metal ions: Implications for selection, design and applications of signaling aptamers and signaling deoxyribozymes. J. Am. Chem. Soc. 2006, 128, 780–790, doi:10.1021/ja053336n.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133