The carbonic anhydrases (CAs) are mostly zinc-containing metalloenzymes which catalyze the reversible hydration/dehydration of carbon dioxide/bicarbonate. The CAs have been extensively studied because of their broad physiological importance in all kingdoms of life and clinical relevance as drug targets. In particular, human CA isoform II (HCA II) has a catalytic efficiency of 10 8 M ?1 s ?1, approaching the diffusion limit. The high catalytic rate, relatively simple procedure of expression and purification, relative stability and extensive biophysical studies of HCA II has made it an exciting candidate to be incorporated into various biomedical applications such as artificial lungs, biosensors and CO 2 sequestration systems, among others. This review highlights the current state of these applications, lists their advantages and limitations, and discusses their future development.
References
[1]
Aggarwal, M.; Boone, C.D.; Kondeti, B.; McKenna, R. Structural annotation of human carbonic anhydrases. J. Enzyme Inhib. Med. Chem. 2013, 28, 267–277, doi:10.3109/14756366.2012.737323.
[2]
Krishnamurthy, V.M.; Kaufman, G.K.; Urbach, A.R.; Gitlin, I.; Gudiksen, K.L.; Weibel, D.B.; Whitesides, G.M. Carbonic anhydrase as a model for biophysical and physical-organic studies of proteins and protein-ligand binding. Chem. Rev. 2008, 108, 946–1051, doi:10.1021/cr050262p.
[3]
Rowlett, R.S. Structure and catalytic mechanism of the beta-carbonic anhydrases. Biochim. et Biophy. Acta 2010, 1804, 362–373.
Hewett-Emmett, D.; Tashian, R.E. Functional diversity, conservation, and convergence in the evolution of the alpha-, beta-, and gamma-carbonic anhydrase gene families. Mol. Phylogenetics Evolut. 1996, 5, 50–77, doi:10.1006/mpev.1996.0006.
[6]
Lindskog, S. Structure and mechanism of carbonic anhydrase. Pharmacol. Ther. 1997, 74, 1–20, doi:10.1016/S0163-7258(96)00198-2.
[7]
Alterio, V.; Di Fiore, A.; D’Ambrosio, K.; Supuran, C.T.; de Simone, G. Multiple binding modes of inhibitors to carbonic anhydrases: How to design specific drugs targeting 15 different isoforms? Chem. Rev. 2012, 112, 4421–4468, doi:10.1021/cr200176r.
[8]
Bergenhem, N.C.; Hallberg, M.; Wisén, S. Molecular characterization of the human carbonic anhydrase-related protein (hca-rp viii). Biochim. et Biophy. Acta 1998, 1384, 294–298.
[9]
Sly, W.S.; Hu, P.Y. Human carbonic anhydrases and carbonic anhydrase deficiencies. Annu. Rev. Biochem. 1995, 64, 375–401, doi:10.1146/annurev.bi.64.070195.002111.
[10]
Supuran, C.T.; Scozzafava, A. Carbonic anhydrases as targets for medicinal chemistry. Bioorganic Med. Chem. 2007, 15, 4336–4350, doi:10.1016/j.bmc.2007.04.020.
[11]
Pastorekova, S.; Parkkila, S.; Pastorek, J.; Supuran, C.T. Carbonic anhydrases: Current state of the art, therapeutic applications and future prospects. J. Enzyme Inhib. Med. Chem. 2004, 19, 199–229, doi:10.1080/14756360410001689540.
[12]
Aggarwal, M.; McKenna, R. Update on carbonic anhydrase inhibitors: A patent review (2008–2011). Expert Opin. Ther. Pat. 2012, 22, 903–915.
[13]
Chegwidden, W.R.; Carter, N.D. Introduction to the Carbonic Anhydrases. In The Carbonic Anhdyrases: New horizons; Chegwidden, W.R., Carter, N.D., Edwards, Y.H., Eds.; Birkh?user Verlag: Boston, MA, USA, 2000; pp. 13–29.
[14]
Christianson, D.W.; Fierke, C.A. Carbonic anhydrase: Evolution of the zinc binding site by nature and design. Acc. Chem. Res. 1996, 29, 331–339, doi:10.1021/ar9501232.
[15]
Duda, D.; McKenna, R. Carbonic Anhydrase, α-class. In Handbook of Metalloproteins; Messerschmidt, A., Ed.; John Wiley & Sons: New York, NY, USA, 2004; pp. 249–263.
[16]
Lindskog, S.; Coleman, J.E. Catalytic mechanism of carbonic-anhydrase. Proc. Natl. Acad. Sci. USA 1973, 70, 2505–2508, doi:10.1073/pnas.70.9.2505.
[17]
Lindskog, S.; Silverman, D.N. The Catalytic Mechanism of Mammalian Carbonic Anhydrases. In The Carbonic Anhdyrases: New Horizons; Chegwidden, W.R., Carter, N.D., Edwards, Y.H., Eds.; Birkh?user Verlag: Boston, MA, USA, 2000; pp. 175–195.
[18]
Tu, C.K.; Silverman, D.N.; Forsman, C.; Jonsson, B.H.; Lindskog, S. Role of histidine 64 in the catalytic mechanism of human carbonic anhydrase ii studied with a site-specific mutant. Biochemistry 1989, 28, 7913–7918, doi:10.1021/bi00445a054.
[19]
Mikulski, R.L.; Silverman, D.N. Proton transfer in catalysis and the role of proton shuttles in carbonic anhydrase. Biochim. et Biophy. Acta 2010, 1804, 422–426, doi:10.1016/j.bbapap.2009.08.003.
[20]
Silverman, D.N. Carbonic anhydrase: Oxygen-18 exchange catalyzed by an enzyme with rate-contributing proton-transfer steps. Methods Enzymol. 1982, 87, 732–752, doi:10.1016/S0076-6879(82)87037-7.
[21]
Silverman, D.N.; Lindskog, S. The catalytic mechanism of carbonic anhydrase: Implications of a rate-limiting protolysis of water. Acc. Chem. Res. 1988, 21, 30–36, doi:10.1021/ar00145a005.
[22]
Silverman, D.N.; McKenna, R. Solvent-mediated proton transfer in catalysis by carbonic anhydrase. Acc. Chem. Res. 2007, 40, 669–675, doi:10.1021/ar7000588.
[23]
Avvaru, B.S.; Busby, S.A.; Chalmers, M.J.; Griffin, P.R.; Venkatakrishnan, B.; Agbandje-McKenna, M.; Silverman, D.N.; McKenna, R. Apo-human carbonic anhdrase ii revisited: Implications of the loss of a metal in protein structure, stability, and solvent network. Biochemistry 2009, 48, 7365–7372, doi:10.1021/bi9007512.
[24]
Murakami, H.; Marelich, G.P.; Grubb, J.H.; Kyle, J.W.; Sly, W.S. Cloning, expression, and sequence homologies of cdna for human carbonic anhydrase ii. Genomics 1987, 1, 159–166, doi:10.1016/0888-7543(87)90008-5.
[25]
Krebs, J.F.; Fierke, C.A. Determinants of catalytic activity and stability of carbonic anhydrase ii as revealed by random mutagenesis. J. Biol. Chem. 1993, 268, 27458–27466.
[26]
Osborne, W.R.; Tashian, R.E. An improved method for the purification of carbonic anhydrase isozymes by affinity chromatography. Anal. Biochem. 1975, 64, 297–303, doi:10.1016/0003-2697(75)90434-0.
[27]
Avvaru, B.S.; Kim, C.U.; Sippel, K.H.; Gruner, S.M.; Agbandje-McKenna, M.; Silverman, D.N.; McKenna, R. A short, strong hydrogen bond in the active site of human carbonic anhydrase ii. Biochemistry 2010, 49, 249–251, doi:10.1021/bi902007b.
[28]
Eriksson, A.E.; Jones, T.A.; Liljas, A. Refined structure of human carbonic anhydrase ii at 2.0 a resolution. Proteins 1988, 4, 274–282, doi:10.1002/prot.340040406.
[29]
Fisher, S.Z.; Aggarwal, M.; Kovalesky, A.; Silverman, D.N.; McKenna, R. Neutron-diffraction of acetazolamide-bound human carbonic anhydrase ii reveals atomic details of drug binding. J. Am. Chem. Soc. 2012, 134, 14726–14729, doi:10.1021/ja3068098.
[30]
Fisher, S.Z.; Kovalevsky, A.Y.; Domsic, J.F.; Mustyakimov, M.; McKenna, R.; Silverman, D.N.; Langan, P.A. Neutron structure of human carbonic anhydrase ii: Implications for proton transfer. Biochemistry 2010, 49, 415–421, doi:10.1021/bi901995n.
[31]
Fisher, S.Z.; Tu, C.; Bhatt, D.; Govindasamy, L.; Agbandje-McKenna, M.; McKenna, R.; Silverman, D.N. Speeding up proton transfer in a fast enzyme: Kinetic and crystallographic studies on the effect of hydrophobic amino acid substitutions in the active site of human carbonic anhydrase ii. Biochemistry 2007, 46, 3803–3813, doi:10.1021/bi602620k.
[32]
Mikulski, R.; West, D.; Sippel, K.H.; Avvaru, B.S.; Aggarwal, M.; Tu, C.; McKenna, R.; Silverman, D.N. Water networks in fast proton transfer during catalysis by human carbonic anhydrase ii. Biochemistry 2013, 52, 125–131, doi:10.1021/bi301099k.
[33]
Fisher, Z.; Boone, C.D.; Biswas, S.M.; Venkatakrishnan, B.; Aggarwal, M.; Tu, C.; Agbandje-McKenna, M.; Silverman, D.; McKenna, R. Kinetic and structural characterization of thermostabilized mutants of human carbonic anhydrase ii. Protein Eng. Des. Sel. PEDS 2012, 25, 347–355, doi:10.1093/protein/gzs027.
[34]
M?rtensson, L.-G.; Karlsson, M.; Carlsson, U. Dramatic stabilization of the native state of human carbonic anhydrase ii by an engineered disulfide bond. Biochemistry 2002, 41, 15867–15875, doi:10.1021/bi020433+.
[35]
Boone, C.D.; Habibzadegan, A.; Tu, C.; Silverman, D.N.; McKenna, R. Structural and catalytic characterization of a thermally stable and acid-stable variant of human carbonic anhydrase ii containing an engineered disulfide bond. Acta Crystallogr. Sect. D Biol. Crystallogr. 2013, 69, 1414–1422, doi:10.1107/S0907444913008743.
[36]
Boone, C.D.; Gill, S.; Habibzadegan, A.; McKenna, R. Carbonic anhydrases and their industrial applications. Curr. Top. Biochem. Res. 2013, 14, 1–10.
[37]
Christianson, D.W.; Fierke, C.A. Carbonic anhydrase: Evolution of the zinc binding site by nature and by design. Acc. Chem. Res. 1996, 29, 331–339, doi:10.1021/ar9501232.
Supuran, C.T. Inhibition of carbonic anhydrase ix as a novel anticancer mechanism. World J. Clin. Oncol. 2012, 3, 98–103, doi:10.5306/wjco.v3.i7.98.
[40]
Supuran, C.T. Carbonic anhydrases: Novel therapeutic applications for inhibitors and activators. Nat. Rev. Drug Discov. 2008, 7, 168–181, doi:10.1038/nrd2467.
[41]
Ware, L.B.; Matthay, M.A. The acute respiratory distress syndrome. N. Engl. J. Med. 2000, 342, 1334–1349, doi:10.1056/NEJM200005043421806.
[42]
Esteban, A.; Anzueto, A.; Frutos, F.; Alia, I.; Brochard, L.; Stewart, T.E.; Benito, S.; Epstein, S.K.; Apezteguia, C.; Nightingale, P.; et al. Characteristics and outcomes in adult patients receiving mechanical ventilation: A 28-day international study. JAMA 2002, 287, 345–355, doi:10.1001/jama.287.3.345.
[43]
Maggiore, S.M.; Richard, J.C.; Brochard, L. What has been learnt from p/v curves in patients with acute lung injury/acute respiratory distress syndrome. Eur. Respir. J. 2003, 22, 22s–26s, doi:10.1183/09031936.03.00004204.
[44]
Haft, J.W.; Griffith, B.P.; Hirschl, R.B.; Bartlett, R.H. Results of an artificial-lung survey to lung transplant program directors. J. Heart Lung Transplant. 2002, 21, 467–473, doi:10.1016/S1053-2498(01)00378-3.
[45]
Hattler, B.G.; Federspiel, W.J. Gas Exchange in the Venous System: Support for the Failing Lung. In The Artificial Lung; Vaslef, S.N., Anderson, R.W., Eds.; Landes Bioscience: Georgetown, DC, USA, 2002; pp. 133–174.
[46]
Wegner, J.A. Oxygenator anatomy and function. J. Cardiothorac. Vasc. Anesth. 1997, 11, 275–281, doi:10.1016/S1053-0770(97)90096-3.
[47]
Federspiel, W.J.; Henchir, K.A. Artificial Lungs: Basic Principles and Current Applications. In Encyclopedia of Biomaterials and Biomedical Engineering; Wnek, G.E., Bowlin, G.L., Eds.; Marcel Dekker, Inc: New York, NY, USA, 2004; pp. 922–931.
[48]
Beckley, P.D.; Holt, D.W.; Tallman, R.D. Oxygenators for Extracorporeal Circulation. In Cardiopulmonary Bypass: Principles and Techniques of Extracorporeal Circulation; Mora, C.T., Ed.; Springer-Verlag: New York, NY, USA, 1995; pp. 199–219.
[49]
Okamoto, T.; Tashiro, M.; Sakanashi, Y.; Tanimoto, H.; Imaizumi, T.; Sugita, M.; Terasaki, H. A new heparin-bonded dense membrane lung combined with minimal systemic heparinization prolonged extracorporeal lung assist in goats. Artif. Organs 1998, 22, 864–872, doi:10.1046/j.1525-1594.1998.06084.x.
[50]
Watnabe, H.; Hayashi, J.; Ohzeki, H.; Moro, H.; Sugawara, M.; Eguchi, S. Biocompatibility of a silicone-coated polypropylene hollow fiber oxygenator in an in vitro model. Ann. Thorac. Surg. 1999, 67, 1315–1319, doi:10.1016/S0003-4975(99)00213-1.
[51]
Kaar, J.L.; Oh, H.-I.; Russell, A.J.; Federspiel, W.J. Towards improved artificial lungs through biocatalysis. Biomaterials 2007, 28, 3131–3139, doi:10.1016/j.biomaterials.2007.03.021.
[52]
Arazawa, D.T.; Oh, H.-I.; Ye, S.-H.; Johnson, C.A., Jr.; Woolley, J.R.; Wagner, W.R.; Federspiel, W.J. Immobilized carbonic anhydrase on hollow fiber membranes accelerates CO2 removal from blood. J. Membr. Sci. 2012, 404, 25–31.
[53]
Hunt, J.A.; Lesburg, C.A.; Christianson, D.W.; Thompson, R.B.; Fierke, C.A. Active-site Engineering of Carbonic Anhydrase and Its Applications to Biosensors. In The Carbonic Anhydrases: New horizons; Chegwidden, W.R., Carter, N.D., Edwards, Y.H., Eds.; Birkh?user Verlag: Boston, MA, USA, 2000; pp. 221–240.
[54]
Lindskog, S.; Nyman, P.O. Metal-binding properties of human erythrocyte carbonic anhydrase. Biochem. Biophys. Acta 1964, 85, 462–474.
Rout, G.R.; Das, P. Effect of metal toxicity on plant growth and metabolism: I. Zinc. Agronomie 2003, 23, 3–11, doi:10.1051/agro:2002073.
[57]
Muyssen, B.T.; de Schamphelaere, K.A.; Janssen, C.R. Mechanisms of chronic waterborne zn toxicity in daphnia magna. Aquat. Toxicol. 2006, 77, 393–401, doi:10.1016/j.aquatox.2006.01.006.
[58]
Chen, R.F.; Kernohan, J.C. Combination of bovine carbonic anhydrase with a fluorescence sulfonamide. J. Biol. Chem. 1967, 242, 5813–5823.
[59]
Huang, C.-C.; Lesburg, C.A.; Kiefer, L.L.; Fierke, C.A.; Christianson, D.W. Reversal of the hydrogen bond to zinc ligand histidine-119 dramatically diminishes catalysis and enhances metal equilibriation kinetics in carbonic anhydrase. Biochemistry 1996, 35, 3439–3446, doi:10.1021/bi9526692.
[60]
Thompson, R.B.; Ge, Z.; Patchan, M.W.; Kiefer, L.L.; Fierke, C.A. Performance enhancement of fluorescence energy transfer-based biosensors by site-directed mutagenesis of the transducer. SPIE 1996, 2508, 136–144.
[61]
Thompson, R.B.; Patchan, M.W. Lifetime-based fluorescence energy transfer biosensing of zinc. Anal. Biochem. 1995, 227, 123–128, doi:10.1006/abio.1995.1260.
[62]
Demille, G.R.; Larlee, K.; Livesey, D.L.; Mailer, K. Conformational change in carbonic anhydrase studied by perturbed directional correlations of gamma rays. Chem. Phys. Lett. 1979, 64, 534–539, doi:10.1016/0009-2614(79)80239-0.
[63]
Harrington, P.C.; Wilkins, R.G. Interaction of acetazolamide and 4-nitrothiophenolate ion with bivalent metal ion derivatives of bovine carbonic anhydrase. Biochemistry 1977, 16, 448–454, doi:10.1021/bi00622a017.
[64]
Thompson, R.B.; Ge, Z.; Patchan, M.W.; Huang, C.-C.; Fierke, C.A. Fiber optic biosensor for co(ii) and cu(ii) based on fluorescence energy transfer with an enzyme transducer. Biosens. Bioelectron. 1996, 11, 557–564, doi:10.1016/0956-5663(96)83291-X.
[65]
Frederickson, C.J.; Giblin, L.J.; Krezel, A.; McAdoo, D.J.; Mueller, R.N.; Zeng, Y.; Balaji, R.V.; Masalha, R.; Thompson, R.B.; Fierke, C.A.; et al. Concentrations of extracellular free zinc (pzn)e in the central nervous system during simple anesthetization, ischemia and reperfusion. Exp. Neurol. 2006, 198, 285–293, doi:10.1016/j.expneurol.2005.08.030.
[66]
Thompson, R.B.; Peterson, D.; Mahoney, W.; Cramer, M.; Maliwal, B.P.; Suh, S.W.; Frederickson, C.; Fierke, C.; Herman, P. Fluorescent zinc indicators for neurobiology. J. Neurosci. Methods 2002, 118, 63–75, doi:10.1016/S0165-0270(02)00144-9.
[67]
Thompson, R.B.; Whetsell, W.O., Jr.; Maliwal, B.P.; Fierke, C.A.; Frederickson, C.J. Fluorescence microscopy of stimulated zn(ii) release from organotypic cultures of mammalian hippocampus using a carbonic anhydrase-based biosensor system. J. Neurosci. Methods 2000, 96, 35–45, doi:10.1016/S0165-0270(99)00183-1.
Wang, D.; Hurst, T.K.; Thompson, R.B.; Fierke, C.A. Genetically encoded ratiometric biosensors to measure intracellular exchangeable zinc in escherichia coli. J. Biomed. Opt. 2011, 16, doi:10.1117/1.3613926.
[70]
McCranor, B.J.; Bozym, R.A.; Vitolo, M.I.; Fierke, C.A.; Bambrick, L.; Polster, B.M.; Fiskum, G.; Thompson, R.B. Quantitative imaging of mitochondrial and cytosolic free zinc levels in an in vitro model of ischemia/reperfusion. J. Bioenerg. Biomembr. 2012, 44, 253–263, doi:10.1007/s10863-012-9427-2.
[71]
Simsek-Ege, F.A.; Bond, G.M.; Stringer, J. Matrix molecular weight cut-off for encapsulation of carbonic anhydrase in polyelectrolyte beads. J. Biomater. Sci. Polym. Ed. 2002, 13, 1175–1187, doi:10.1163/156856202320892948.
[72]
Cowan, R.M.; Ge, J.; Qin, Y.J.; McGregor, M.L.; Trachtenberg, M.C. Co2 capture by means of an enzyme-based reactor. Ann. N.Y. Acad. Sci. 2003, 984, 453–469, doi:10.1111/j.1749-6632.2003.tb06019.x.
[73]
Satav, S.S.; Bhat, S.; Thayumanavan, S. Feedback regulated drug delivery vehicles: Carbon dioxide responsive cationic hydrogels for antidote release. Biomacromol 2010, 11, 1735–1740, doi:10.1021/bm1005454.
Aggarwal, M.; Boone, C.D.; Kondeti, B.; Tu, C.; Silverman, D.N.; McKenna, R. Effects of cryoprotectants on the structure and thermostability of the human carbonic anhydrase ii-acetazolamide complex. Acta Crystallogr. Sect. D Biol. Crystallogr. 2013, 69, 860–865, doi:10.1107/S0907444913002771.
[76]
Sippel, K.H.; Robbins, A.H.; Domsic, J.; Genis, C.; Agbandje-McKenna, M.; McKenna, R. High-resolution structure of human carbonic anhydrase ii complexed with acetazolamide reveals insights into inhibitor drug design. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2009, 65, 992–995, doi:10.1107/S1744309109036665.
[77]
Aggarwal, M.; Kondeti, B.; McKenna, R. Insights towards sulfonamide drug specificity in alpha-carbonic anhydrases. Bioorganic Med. Chem. 2013, 21, 1526–1533, doi:10.1016/j.bmc.2012.08.019.
[78]
Svastová, E.; Huliková, A.; Rafajová, M.; Zat’ovicová, M.; Gibadulinová, A.; Casini, A.; Cecchi, A.; Scozzafava, A.; Supuran, C.T.; Pastorek, J.; et al. Hypoxia activates the capacity of tumor-associated carbonic anhydrase ix to acidify extracellular ph. FEBS lett. 2004, 577, 439–445, doi:10.1016/j.febslet.2004.10.043.
[79]
Vullo, D.; Franchi, M.; Gallori, E.; Pastorek, J.; Scozzafava, A.; Pastorekova, S.; Supuran, C.T. Carbonic anhydrase inhibitors: Inhibition of the tumor-associated isozyme ix with aromatic and heterocyclic sulfonamides. Bioorganic Med. Chem. Lett. 2003, 13, 1005–1009, doi:10.1016/S0960-894X(03)00091-X.
[80]
Winum, J.Y.; Rami, M.; Scozzafava, A.; Montero, J.L.; Supuran, C. Carbonic anhydrase ix: A new druggable target for the design of antitumor agents. Med. Res. Rev. 2008, 28, 445–463, doi:10.1002/med.20112.
Gould, S.A.; Moore, E.E.; Hoyt, D.B.; Ness, P.M.; Norris, E.J.; Carson, J.L.; Hides, G.A.; Freeman, I.H.; DeWoskin, R.; Moss, G.S. The life-sustaining capacity of human polymerized hemoglobin when red cells might be unavailable. J. Am. Coll. Surg. 2002, 195, 445–452, doi:10.1016/S1072-7515(02)01335-2.
[84]
Bian, Y.; Rong, Z.; Chang, T.M. Polyhemoglobin-superoxide dismutase-catalase-carbonic anhydrase: A novel biotechnology-based blood substitute that transports both oxygen and carbon dioxide and also acts as an antioxidant. Artif. Cells Blood Substit. Immobil. Biotechnol. 2012, 40, 28–37, doi:10.3109/10731199.2011.582041.