Protein disulfide isomerases (PDIs) catalyze the formation, breakage, and rearrangement of disulfide bonds to properly fold nascent polypeptides within the endoplasmic reticulum (ER). Classical animal and yeast PDIs possess two catalytic thioredoxin-like domains ( a, a′) and two non-catalytic domains ( b, b′), in the order a- b- b′- a′ . The model plant, Arabidopsis thaliana, encodes 12 PDI-like proteins, six of which possess the classical PDI domain arrangement (AtPDI1 through AtPDI6). Three additional AtPDIs (AtPDI9, AtPDI10, AtPDI11) possess two thioredoxin domains, but without intervening b-b′ domains. C-terminal green fluorescent protein (GFP) fusions to each of the nine dual-thioredoxin PDI homologs localized predominantly to the ER lumen when transiently expressed in protoplasts. Additionally, expression of AtPDI9:GFP-KDEL and AtPDI10: GFP-KDDL was associated with the formation of ER bodies. AtPDI9, AtPDI10, and AtPDI11 mediated the oxidative folding of alkaline phosphatase when heterologously expressed in the Escherichia coli protein folding mutant, dsbA?. However, only three classical AtPDIs (AtPDI2, AtPDI5, AtPDI6) functionally complemented dsbA?. Interestingly, chemical inducers of the ER unfolded protein response were previously shown to upregulate most of the AtPDIs that complemented dsbA?. The results indicate that Arabidopsis PDIs differ in their localization and protein folding activities to fulfill distinct molecular functions in the ER.
References
[1]
Gething, M.J.; Sambrook, J. Protein folding in the cell. Nature 1992, 355, 33–45, doi:10.1038/355033a0.
[2]
Ellis, R.J. The general concept of molecular chaperones. Philos. Trans. R Soc. Lond. B Biol. Sci. 1993, 339, 257–261, doi:10.1098/rstb.1993.0023.
[3]
Miernyk, J.A. Protein folding in the plant cell. Plant Physiol. 1999, 121, 695–703, doi:10.1104/pp.121.3.695.
[4]
Schr?der, M.; Kaufman, R.J. ER stress and the unfolded protein response. Mutat. Res. 2005, 569, 29–63, doi:10.1016/j.mrfmmm.2004.06.056.
[5]
Hebert, D.N.; Molinari, M. In and out of the ER: Protein folding, quality control, degradation, and related human disease. Physiol. Rev. 2007, 87, 1377–1408, doi:10.1152/physrev.00050.2006.
[6]
Freedman, R.B.; Hirst, T.R.; Tuite, M.F. Protein disulphide isomerase: Building bridges in protein folding. Trends Biochem. Sci. 1994, 19, 331–336, doi:10.1016/0968-0004(94)90072-8.
[7]
Edman, J.C.; Ellis, L.; Blacher, R.W.; Roth, R.A.; Rutter, W.J. Sequence of protein disulphide isomerase and implications of its relationship to thioredoxin. Nature 1985, 317, 267–270, doi:10.1038/317267a0.
[8]
Kemmink, J.; Darby, N.J.; Dijkstra, K.; Nilges, M.; Creighton, T.E. The folding catalyst protein disulfide isomerase is constructed of active and inactive thioredoxin modules. Curr. Biol. 1997, 7, 239–245.
[9]
Wang, C.C.; Tsou, C.L. Protein disulfide isomerase is both an enzyme and a chaperone. FASEB J. 1993, 7, 1515–1517.
[10]
Cai, H.; Wang, C.C.; Tsou, C.L. Chaperone-like activity of protein disulfide isomerase in the refolding of a protein with no disulfide bonds. J. Biol. Chem. 1994, 269, 24550–24552.
[11]
Song, J.L.; Wang, C.C. Chaperone-like activity of protein disulfide-isomerase in the refolding of rhodanese. Eur. J. Biochem. 1995, 231, 312–316, doi:10.1111/j.1432-1033.1995.tb20702.x.
[12]
Hatahet, F.; Ruddock, L.W. Protein disulfide isomerase: A critical evaluation of its function in disulfide bond formation. Antioxid. Redox Signal. 2009, 11, 2807–2850, doi:10.1089/ars.2009.2466.
[13]
Ferrari, D.M.; S?ling, H.D. The protein disulphide-isomerase family: Unravelling a string of folds. Biochem. J. 1999, 339, 1–10, doi:10.1042/0264-6021:3390001.
[14]
Kramer, B.; Ferrari, D.M.; Klappa, P.; P?hlmann, N.; S?ling, H.D. Functional roles and efficiencies of the thioredoxin boxes of calcium-binding proteins 1 and 2 in protein folding. Biochem. J. 2001, 357, 83–95, doi:10.1042/0264-6021:3570083.
[15]
Kikuchi, M.; Doi, E.; Tsujimoto, I.; Horibe, T.; Tsujimoto, Y. Functional analysis of human P5, a protein disulfide isomerase homologue. J. Biochem. 2002, 132, 451–455, doi:10.1093/oxfordjournals.jbchem.a003242.
[16]
Lu, D.-P.; Christopher, D.A. Endoplasmic reticulum stress activates the expression of a sub-group of protein disulfide isomerase genes and AtbZIP60 modulates the response in Arabidopsis thaliana. Mol. Genet. Genomics 2008, 280, 199–210, doi:10.1007/s00438-008-0356-z.
[17]
Li, C.P.; Larkins, B.A. Expression of protein disulfide isomerase is elevated in the endosperm of the maize floury-2 mutant. Plant Mol. Biol. 1996, 30, 873–882, doi:10.1007/BF00020800.
[18]
Takemoto, Y.; Coughlan, S.J.; Okita, T.W.; Satoh, H.; Ogawa, M.; Kumamaru, T. The rice mutant esp2 greatly accumulates the glutelin precursor and deletes the protein disulfide isomerase. Plant Physiol. 2002, 128, 1212–1222, doi:10.1104/pp.010624.
[19]
Onda, Y.; Nagamine, A.; Sakurai, M.; Kumamaru, T.; Ogawa, M.; Kawagoe, Y. Distinct roles of protein disulfide isomerase and P5 sulfhydryl oxidoreductases in multiple pathways for oxidation of structurally diverse storage proteins in rice. Plant Cell 2011, 23, 210–223, doi:10.1105/tpc.110.079509.
[20]
Gruber, C.W.; Cemazar, M.; Clark, R.J.; Horibe, T.; Renda, R.F.; Anderson, M.A.; Craik, D.J. A novel plant protein-disulfide isomerase involved in the oxidative folding of cystine knot defense proteins. J. Biol. Chem. 2007, 282, 20435–20446.
[21]
Wang, H.; Boavida, L.C.; Ron, M.; McCormick, S. Truncation of a protein disulfide isomerase, PDIL2–1, delays embryo sac maturation and disrupts pollen tube guidance in Arabidopsis thalian. Plant Cell 2008, 20, 3300–3311, doi:10.1105/tpc.108.062919.
[22]
Andème-Ondzighi, C.; Christopher, D.A.; Cho, E.J.; Chang, S.C.; Staehelin, L.A. Arabidopsis protein disulfide isomerase-5 inhibits cysteine proteases during trafficking to vacuoles before programmed cell death of the endothelium in developing seeds. Plant Cell 2008, 20, 2205–2220, doi:10.1105/tpc.108.058339.
[23]
Cho, E.J.; Yuen, C.Y.; Kang, B.H.; Ondzighi, C.A.; Staehelin, L.A.; Christopher, D.A. Protein disulfide isomerase-2 of Arabidopsis mediates protein folding and localizes to both the secretory pathway and nucleus, where it interacts with maternal effect embryo arrest factor. Mol. Cells 2011, 32, 459–475, doi:10.1007/s10059-011-0150-3.
[24]
Lu, D.-P.; Christopher, D.A. Immunolocalization of a protein disulfide isomerase to Arabidopsis thaliana chloroplasts and its association with starch biogenesis. Int. J. Plant Sci. 2006, 167, 1–9, doi:10.1086/498071.
[25]
Kim, J.; Mayfield, S.P. Protein disulfide isomerase as a regulator of chloroplast translational activation. Science 1997, 278, 1954–1957, doi:10.1126/science.278.5345.1954.
[26]
Houston, N.L.; Fan, C.; Xiang, J.Q.; Schulze, J.M.; Jung, R.; Boston, R.S. Phylogenetic analyses identify 10 classes of the protein disulfide isomerase family in plants, including single-domain protein disulfide isomerase-related proteins. Plant Physiol. 2005, 137, 762–778, doi:10.1104/pp.104.056507.
[27]
d’Aloisio, E.; Paolacci, A.R.; Dhanapal, A.P.; Tanzarella, O.A.; Porceddu, E.; Ciaffi, M. The Protein Disulfide Isomerase gene family in bread wheat (T. aestivum L.). BMC Plant Biol. 2010, 10, e101, doi:10.1186/1471-2229-10-101.
[28]
Lucero, H.A.; Kaminer, B. The role of calcium on the activity of ERcalcistorin/protein-disulfide isomerase and the significance of the C-terminal and its calcium binding. A comparison with mammalian protein-disulfide isomerase. J. Biol. Chem. 1999, 274, 3243–3251, doi:10.1074/jbc.274.5.3243.
[29]
Lappi, A.K.; Lensink, M.F.; Alanen, H.I.; Salo, K.E.; Lobell, M.; Juffer, A.H.; Ruddock, L.W. A conserved arginine plays a role in the catalytic cycle of the protein disulphide isomerases. J. Mol. Biol. 2004, 335, 283–295, doi:10.1016/j.jmb.2003.10.051.
[30]
Nelson, B.K.; Cai, X.; Nebenführ, A. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 2007, 51, 1126–1136, doi:10.1111/j.1365-313X.2007.03212.x.
[31]
Miao, Y.; Li, K.Y.; Li, H.Y.; Yao, X.; Jiang, L. The vacuolar transport of aleurain-GFP and 2S albumin-GFP fusions is mediated by the same pre-vacuolar compartments in tobacco BY-2 and Arabidopsis suspension cultured cells. Plant J. 2008, 56, 824–839, doi:10.1111/j.1365-313X.2008.03645.x.
[32]
Sone, M.; Kishigami, S.; Yoshihisa, T.; Ito, K. Roles of disulfide bonds in bacterial alkaline phosphatase. J. Biol. Chem. 1997, 272, 6174–6178, doi:10.1074/jbc.272.10.6174.
[33]
Humphreys, D.P.; Weir, N.; Mountain, A.; Lund, P.A. Human protein disulfide isomerase functionally complements a dsbA mutation and enhances the yield of pectate lyase C in Escherichia coli. J. Biol. Chem. 1995, 270, 28210–28215, doi:10.1074/jbc.270.47.28210.
[34]
Walker, K.W.; Lyles, M.M.; Gilbert, H.F. Catalysis of oxidative protein folding by mutants of protein disulfide isomerase with a single active-site cysteine. Biochemistry 1996, 35, 1972–1980, doi:10.1021/bi952157n.
[35]
Darby, N.J.; Penka, E.; Vincentelli, R. The multi-domain structure of protein disulfide isomerase is essential for high catalytic efficiency. J. Mol. Biol. 1998, 276, 239–247, doi:10.1006/jmbi.1997.1504.
[36]
Atkin, J.D.; Farg, M.A.; Turner, B.J.; Tomas, D.; Lysaght, J.A.; Nunan, J.; Rembach, A.; Nagley, P.; Beart, P.M.; Cheema, S.S.; Horne, M.K. Induction of the unfolded protein response in familial amyotrophic lateral sclerosis and association of protein-disulfide isomerase with superoxide dismutase 1. J. Biol. Chem. 2006, 281, 30152–30165, doi:10.1074/jbc.M603393200.
[37]
Solomon, M.; Belenghi, B.; Delledonne, M.; Menachem, E.; Levine, A. The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. Plant Cell 1999, 11, 431–444.
[38]
Turano, C.; Coppari, S.; Altieri, F.; Ferraro, A. Proteins of the PDI family: Unpredicted non-ER locations and functions. J. Cell. Physiol. 2002, 193, 154–163, doi:10.1002/jcp.10172.
[39]
Kim, Y.J.; Yeu, S.Y.; Park, B.S.; Koh, H.-J.; Song, J.T.; Seo, H.S. Protein disulfide isomerase-like protein 1-1 controls endosperm development through regulation of the amount and composition of seed proteins in rice. PLoS One 2012, 7, e44493.
[40]
Huber-Wunderlich, M.; Glockshuber, R. A single dipeptide sequence modulates the redox properties of a whole enzyme family. Fold. Des. 1998, 3, 161–171, doi:10.1016/S1359-0278(98)00024-8.
[41]
Guddat, L.W.; Bardwell, J.C.; Glockshuber, R.; Huber-Wunderlich, M.; Zander, T.; Martin, J.L. Structural analysis of three His32 mutants of DsbA: Support for an electrostatic role of His32 in DsbA stability. Protein Sci. 1997, 6, 1893–1900, doi:10.1002/pro.5560060910.
[42]
Jessop, C.E.; Watkins, R.H.; Simmons, J.J.; Tasab, M.; Bulleid, N.J. Protein disulphide isomerase family members show distinct substrate specificity: P5 is targeted to BiP client proteins. J. Cell Sci. 2009, 122, 4287–4295, doi:10.1242/jcs.059154.
[43]
Klappa, P.; Ruddock, L.W.; Darby, N.J.; Freedman, R.B. The b' domain provides the principal peptide-binding site of protein disulfide isomerase but all domains contribute to binding of misfolded proteins. EMBO J. 1998, 17, 927–935, doi:10.1093/emboj/17.4.927.
[44]
Pagnussat, G.C.; Yu, H.J.; Ngo, Q.A.; Rajani, S.; Mayalagu, S.; Johnson, C.S.; Capron, A.; Xie, L.F.; Ye, D.; Sundaresan, V. Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 2005, 132, 603–614, doi:10.1242/dev.01595.
[45]
Saito, Y.; Kishida, K.; Takata, K.; Takahashi, H.; Shimada, T.; Tanaka, K.; Morita, S.; Satoh, S.; Masumura, T.J. A green fluorescent protein fused to rice prolamin forms protein body-like structures in transgenic rice. Exp. Bot. 2009, 60, 615–627, doi:10.1093/jxb/ern311.
[46]
Carrió, M.M.; Villaverde, A. Role of molecular chaperones in inclusion body formation. FEBS Lett. 2003, 537, 215–221, doi:10.1016/S0014-5793(03)00126-1.
[47]
Laible, M.; Boonrod, K. Homemade site directed mutagenesis of whole plasmids. J. Vis. Exp. 2009, 11, e1135.
[48]
He, P.; Shan, L.; Sheen, J. The use of protoplasts to study innate immune responses. Methods Mol. Biol. 2007, 354, 1–9.
[49]
Martínez-García, J.F.; Monte, E.; Quail, P.H. A simple, rapid and quantitative method for preparing Arabidopsis protein extracts for immunoblot analysis. Plant J. 1999, 20, 251–257, doi:10.1046/j.1365-313x.1999.00579.x.
[50]
Rietsch, A.; Belin, D.; Martin, N.; Beckwith, J. An in vivo pathway for disulfide bond isomerization in Escherichia coli. Proc. Natl. Acad. Sci. USA 1996, 93, 13048–13053, doi:10.1073/pnas.93.23.13048.