全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biology  2014 

Contemporary Network Proteomics and Its Requirements

DOI: 10.3390/biology3010022

Keywords: proteomics, networks, systems biology, bioinformatics

Full-Text   Cite this paper   Add to My Lib

Abstract:

The integration of networks with genomics (network genomics) is a familiar field. Conventional network analysis takes advantage of the larger coverage and relative stability of gene expression measurements. Network proteomics on the other hand has to develop further on two critical factors: (1) expanded data coverage and consistency, and (2)?suitable reference network libraries, and data mining from them. Concerning (1) we discuss several contemporary themes that can improve data quality, which in turn will boost the outcome of downstream network analysis. For (2), we focus on network analysis developments, specifically, the need for context-specific networks and essential considerations for localized network analysis.

References

[1]  Gillet, L.C.; Navarro, P.; Tate, S.; Rost, H.; Selevsek, N.; Reiter, L.; Bonner, R.; Aebersold, R. Targeted data extraction of the ms/ms spectra generated by data-independent acquisition: A new concept for consistent and accurate proteome analysis. Mol. Cell Proteomics 2012, 11, doi:10.1074/mcp.O111.016717.
[2]  Silva, J.C.; Gorenstein, M.V.; Li, G.Z.; Vissers, J.P.; Geromanos, S.J. Absolute quantification of proteins by lcmse: A virtue of parallel ms acquisition. Mol. Cell Proteomics 2006, 5, 144–156.
[3]  Goh, W.W.; Wong, L. Computational proteomics: Designing a comprehensive analytical strategy. Drug Discov. Today 2013, doi:10.1016/j.drudis.2013.07.008.
[4]  Li, G.Z.; Vissers, J.P.; Silva, J.C.; Golick, D.; Gorenstein, M.V.; Geromanos, S.J. Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures. Proteomics 2009, 9, 1696–1719, doi:10.1002/pmic.200800564.
[5]  Ideker, T.; Sharan, R. Protein networks in disease. Genome Res. 2008, 18, 644–652, doi:10.1101/gr.071852.107.
[6]  Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; Mesirov, J.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550, doi:10.1073/pnas.0506580102.
[7]  Pavlidis, P.; Lewis, D.P.; Noble, W.S. Exploring gene expression data with class scores. Pac. Symp. Biocomput. 2002, 474–485.
[8]  Soh, D.; Dong, D.; Guo, Y.; Wong, L. Finding consistent disease subnetworks across microarray datasets. BMC Bioinformatics 2011, 12, S15.
[9]  Sivachenko, A.Y.; Yuryev, A.; Daraselia, N.; Mazo, I. Molecular networks in microarray analysis. J. Bioinform. Comput. Biol. 2007, 5, 429–456, doi:10.1142/S0219720007002795.
[10]  Goh, W.W.; Lee, Y.H.; Chung, M.; Wong, L. How advancement in biological network analysis methods empowers proteomics. Proteomics 2012, 12, 550–563, doi:10.1002/pmic.201100321.
[11]  Goh, W.W.; Sergot, M.J.; Sng, J.C.; Wong, L. Comparative network-based recovery analysis and proteomic profiling of neurological changes in valproic acid-treated mice. J. Proteome Res. 2013, 12, 2116–2127, doi:10.1021/pr301127f.
[12]  Deutsch, E.W.; Mendoza, L.; Shteynberg, D.; Farrah, T.; Lam, H.; Tasman, N.; Sun, Z.; Nilsson, E.; Pratt, B.; Prazen, B.; Eng, J.K.; Martin, D.B.; Nesvizhskii, A.I.; Aebersold, R. A guided tour of the trans-proteomic pipeline. Proteomics 2010, 10, 1150–1159, doi:10.1002/pmic.200900375.
[13]  Specht, M.; Kuhlgert, S.; Fufezan, C.; Hippler, M. Proteomics to go: Proteomatic enables the user-friendly creation of versatile ms/ms data evaluation workflows. Bioinformatics 2011, 27, 1183–1184, doi:10.1093/bioinformatics/btr081.
[14]  Sturm, M.; Bertsch, A.; Gropl, C.; Hildebrandt, A.; Hussong, R.; Lange, E.; Pfeifer, N.; Schulz-Trieglaff, O.; Zerck, A.; Reinert, K.; Kohlbacher, O. Openms—An open-source software framework for mass spectrometry. BMC Bioinformatics 2008, 9, 163, doi:10.1186/1471-2105-9-163.
[15]  Kessner, D.; Chambers, M.; Burke, R.; Agus, D.; Mallick, P. Proteowizard: Open source software for rapid proteomics tools development. Bioinformatics 2008, 24, 2534–2536, doi:10.1093/bioinformatics/btn323.
[16]  Keller, A.; Nesvizhskii, A.I.; Kolker, E.; Aebersold, R. Empirical statistical model to estimate the accuracy of peptide identifications made by ms/ms and database search. Anal. Chem. 2002, 74, 5383–5392, doi:10.1021/ac025747h.
[17]  Geer, L.Y.; Markey, S.P.; Kowalak, J.A.; Wagner, L.; Xu, M.; Maynard, D.M.; Yang, X.; Shi, W.; Bryant, S.H. Open mass spectrometry search algorithm. J. Proteome Res. 2004, 3, 958–964, doi:10.1021/pr0499491.
[18]  Ma, B.; Zhang, K.; Hendrie, C.; Liang, C.; Li, M.; Doherty-Kirby, A.; Lajoie, G. Peaks: Powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun. Mass. Spectrom. 2003, 17, 2337–2342, doi:10.1002/rcm.1196.
[19]  Perkins, D.N.; Pappin, D.J.; Creasy, D.M.; Cottrell, J.S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999, 20, 3551–3567, doi:10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2.
[20]  Craig, R.; Beavis, R.C. Tandem: Matching proteins with tandem mass spectra. Bioinformatics 2004, 20, 1466–1467, doi:10.1093/bioinformatics/bth092.
[21]  Weisser, H.; Nahnsen, S.; Grossmann, J.; Nilse, L.; Quandt, A.; Brauer, H.; Sturm, M.; Kenar, E.; Kohlbacher, O.; Aebersold, R.; Malmstrom, L. An automated pipeline for high-throughput label-free quantitative proteomics. J. Proteome Res. 2013, 12, 1628–1644, doi:10.1021/pr300992u.
[22]  Wolf-Yadlin, A.; Hautaniemi, S.; Lauffenburger, D.A.; White, F.M. Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proc. Natl. Acad. Sci. USA 2007, 104, 5860–5865, doi:10.1073/pnas.0608638104.
[23]  Donders, A.R.; van der Heijden, G.J.; Stijnen, T.; Moons, K.G. Review: A gentle introduction to imputation of missing values. J. Clin. Epidemiol. 2006, 59, 1087–1091, doi:10.1016/j.jclinepi.2006.01.014.
[24]  Karpievitch, Y.V.; Dabney, A.R.; Smith, R.D. Normalization and missing value imputation for label-free lc-ms analysis. BMC Bioinformatics 2012, 13, S5, doi:10.1186/1471-2105-13-S16-S5.
[25]  Aittokallio, T. Dealing with missing values in large-scale studies: Microarray data imputation and beyond. Brief. Bioinform. 2010, 11, 253–264, doi:10.1093/bib/bbp059.
[26]  Karpievitch, Y.; Stanley, J.; Taverner, T.; Huang, J.; Adkins, J.N.; Ansong, C.; Heffron, F.; Metz, T.O.; Qian, W.J.; Yoon, H.; Smith, R.D.; Dabney, A.R. A statistical framework for protein quantitation in bottom-up ms-based proteomics. Bioinformatics 2009, 25, 2028–2034, doi:10.1093/bioinformatics/btp362.
[27]  Muraoka, S.; Kume, H.; Watanabe, S.; Adachi, J.; Kuwano, M.; Sato, M.; Kawasaki, N.; Kodera, Y.; Ishitobi, M.; Inaji, H.; et al. Strategy for srm-based verification of biomarker candidates discovered by itraq method in limited breast cancer tissue samples. J. Proteome Res. 2012, 11, 4201–4210.
[28]  Goh, W.W.; Fan, M.; Low, H.S.; Sergot, M.; Wong, L. Enhancing the utility of proteomics signature profiling (psp) with pathway derived subnets (pdss), performance analysis and specialised ontologies. BMC Genomics 2013, 14, 35, doi:10.1186/1471-2164-14-35.
[29]  Goh, W.W.; Lee, Y.H.; Ramdzan, Z.M.; Sergot, M.J.; Chung, M.; Wong, L. Proteomics signature profiling (psp): A novel contextualization approach for cancer proteomics. J. Proteome Res. 2012, 11, 1571–1581, doi:10.1021/pr200698c.
[30]  Granholm, V.; Kall, L. Quality assessments of peptide-spectrum matches in shotgun proteomics. Proteomics 2011, 11, 1086–1093, doi:10.1002/pmic.201000432.
[31]  Colaert, N.; Degroeve, S.; Helsens, K.; Martens, L. Analysis of the resolution limitations of peptide identification algorithms. J. Proteome Res. 2011, 10, 5555–5561, doi:10.1021/pr200913a.
[32]  Noyce, A.B.; Smith, R.; Dalgleish, J.; Taylor, R.M.; Erb, K.C.; Okuda, N.; Prince, J.T. Mspire-simulator: Lc-ms shotgun proteomic simulator for creating realistic gold standard data. J. Proteome Res. , 2013.
[33]  Kall, L.; Canterbury, J.D.; Weston, J.; Noble, W.S.; MacCoss, M.J. Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat. Methods 2007, 4, 923–925, doi:10.1038/nmeth1113.
[34]  Schwammle, V.; Leon, I.R.; Jensen, O.N. Assessment and improvement of statistical tools for comparative proteomics analysis of sparse data sets with few experimental replicates. J. Proteome Res. 2013, 12, 3874–3883, doi:10.1021/pr400045u.
[35]  Goh, W.W.; Lee, Y.H.; Zubaidah, R.M.; Jin, J.; Dong, D.; Lin, Q.; Chung, M.C.; Wong, L. Network-based pipeline for analyzing ms data: An application toward liver cancer. J. Proteome Res. 2011, 10, 2261–2272, doi:10.1021/pr1010845.
[36]  Goh, W.W.; Wong, L. Networks in proteomics analysis of cancer. Curr. Opin. Biotechnol. 2013, 24, 1122–1128, doi:10.1016/j.copbio.2013.02.011.
[37]  Ideker, T.; Krogan, N.J. Differential network biology. Mol. Syst. Biol. 2012, 8, 565.
[38]  Bisson, N.; James, D.A.; Ivosev, G.; Tate, S.A.; Bonner, R.; Taylor, L.; Pawson, T. Selected reaction monitoring mass spectrometry reveals the dynamics of signaling through the grb2 adaptor. Nat. Biotechnol. 2011, 29, 653–658, doi:10.1038/nbt.1905.
[39]  Collins, B.C.; Gillet, L.C.; Rosenberger, G.; Rost, H.L.; Vichalkovski, A.; Gstaiger, M.; Aebersold, R. Quantifying protein interaction dynamics by swath mass spectrometry: Application to the 14–3-3 system. Nat. Methods 2013, 10, 1246–1253, doi:10.1038/nmeth.2703.
[40]  Aladag, A.E.; Erten, C. Spinal: Scalable protein interaction network alignment. Bioinformatics 2013, 29, 917–924, doi:10.1093/bioinformatics/btt071.
[41]  Phan, H.T.; Sternberg, M.J. Pinalog: A novel approach to align protein interaction networks—Implications for complex detection and function prediction. Bioinformatics 2012, 28, 1239–1245, doi:10.1093/bioinformatics/bts119.
[42]  Adamcsek, B.; Palla, G.; Farkas, I.J.; Derenyi, I.; Vicsek, T. Cfinder: Locating cliques and overlapping modules in biological networks. Bioinformatics 2006, 22, 1021–1023, doi:10.1093/bioinformatics/btl039.
[43]  Nepusz, T.; Yu, H.; Paccanaro, A. Detecting overlapping protein complexes in protein-protein interaction networks. Nat. Methods 2012, 9, 471–472, doi:10.1038/nmeth.1938.
[44]  Yong, C.H.; Liu, G.; Chua, H.N.; Wong, L. Supervised maximum-likelihood weighting of composite protein networks for complex prediction. BMC Syst. Biol. 2012, 6, S13, doi:10.1186/1752-0509-6-S2-S13.
[45]  Habibi, M.; Eslahchi, C.; Wong, L. Protein complex prediction based on k-connected subgraphs in protein interaction network. BMC Syst. Biol. 2010, 4, 129, doi:10.1186/1752-0509-4-129.
[46]  Liu, G.; Yong, C.H.; Chua, H.N.; Wong, L. Decomposing ppi networks for complex discovery. Proteome Sci. 2011, 9, S15, doi:10.1186/1477-5956-9-S1-S15.
[47]  Jung, S.H.; Hyun, B.; Jang, W.H.; Hur, H.Y.; Han, D.S. Protein complex prediction based on simultaneous protein interaction network. Bioinformatics 2010, 26, 385–391, doi:10.1093/bioinformatics/btp668.
[48]  Ruepp, A.; Waegele, B.; Lechner, M.; Brauner, B.; Dunger-Kaltenbach, I.; Fobo, G.; Frishman, G.; Montrone, C.; Mewes, H.W. Corum: The comprehensive resource of mammalian protein complexes—2009. Nucleic Acids Res. 2010, 38, D497–D501, doi:10.1093/nar/gkp914.
[49]  Pagel, P.; Kovac, S.; Oesterheld, M.; Brauner, B.; Dunger-Kaltenbach, I.; Frishman, G.; Montrone, C.; Mark, P.; Stumpflen, V.; Mewes, H.W.; Ruepp, A.; Frishman, D. The mips mammalian protein-protein interaction database. Bioinformatics 2005, 21, 832–834, doi:10.1093/bioinformatics/bti115.
[50]  Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology: Tool for the unification of biology. The gene ontology consortium. Nat. Genet. 2000, 25, 25–29, doi:10.1038/75556.
[51]  Prasad, T.S.; Kandasamy, K.; Pandey, A. Human protein reference database and human proteinpedia as discovery tools for systems biology. Methods Mol. Biol. 2009, 577, 67–79, doi:10.1007/978-1-60761-232-2_6.
[52]  Luc, P.V.; Tempst, P. Pindb: A database of nuclear protein complexes from human and yeast. Bioinformatics 2004, 20, 1413–1415, doi:10.1093/bioinformatics/bth114.
[53]  Wu, M.; Yu, Q.; Li, X.; Zheng, J.; Huang, J.F.; Kwoh, C.K. Benchmarking human protein complexes to investigate drug-related systems and evaluate predicted protein complexes. PLoS One 2013, 8, e53197.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133