Escherichia coli colonizes the human intestine shortly after birth, with most strains engaging in a commensal relationship. However, some E. coli strains have evolved toward acquiring genetic traits associated with virulence. Currently, five categories of enteroadherent E. coli strains are well-recognized, and are classified in regard to expressed adhesins and the strategy used during the colonization. The high morbidity associated with diarrhea has motivated investigations focusing on E. coli adhesins, as well on factors that inhibit bacterial adherence. Breastfeeding has proved to be the most effective strategy for preventing diarrhea in children. Aside from the immunoglobulin content, glycocompounds and oligosaccharides in breast milk play a critical role in the innate immunity against diarrheagenic E. coli strains. This review summarizes the colonization factors and virulence strategies exploited by diarrheagenic E. coli strains, addressing the inhibitory effects that oligosaccharides and glycocompounds, such as lactoferrin and free secretory components, exert on the adherence and virulence of these strains. This review thus provides an overview of experimental data indicating that human milk glycocompounds are responsible for the universal protective effect of breastfeeding against diarrheagenic E. coli pathotypes.
Sekirov, I.; Russell, S.L.; Antunes, L.C.; Finlay, B.B. Gut microbiota in health and disease. Physiol. Rev. 2010, 90, 859–904, doi:10.1152/physrev.00045.2009.
[3]
Fanaro, S.; Chierici, R.; Guerrini, P.; Vigi, V. Intestinal microflora in early infancy: Composition and development. Acta Paediatr. Suppl. 2003, 91, 48–55.
[4]
Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464, 59–65, doi:10.1038/nature08821.
Orskov, F. On the occurrence of E. coli belonging to O-group 26 in cases of infantile diarrhoea and white scours. Acta Pathol. Microbiol. Scand. 1951, 29, 373–378, doi:10.1111/j.1699-0463.1951.tb00142.x.
[7]
Ewing, W.H.; Tanner, K.E.; Tatum, H.W. A new serotype of Escherichia coli associated with infantile diarrhea. Public Health Rep. 1955, 70, 107–114, doi:10.2307/4589027.
[8]
Evans, D.G.; Silver, R.P.; Evans, D.J., Jr.; Chase, D.G.; Gorbach, S.L. Plasmid-controlled colonization factor associated with virulence in Esherichia coli enterotoxigenic for humans. Infect. Immun. 1975, 12, 656–667.
[9]
Evans, D.G.; Evans, D.J., Jr. New surface-associated heat-labile colonization factor antigen (CFA/II) produced by enterotoxigenic Esherichia coli of serogroups O6 and O8. Infect. Immun. 1978, 21, 638–647.
[10]
Scaletsky, I.C.; Silva, M.L.; Trabulsi, L.R. Distinctive patterns of adherence of enteropathogenic Esherichia coli to HeLa cells. Infect. Immun. 1984, 45, 534–536.
Giron, J.A.; Ho, A.S.; Schoolnik, G.K. An inducible bundle-forming pilus of enteropathogenic Esherichia coli. Science 1991, 254, 710–713.
[13]
Giron, J.A.; Ho, A.S.; Schoolnik, G.K. Characterization of fimbriae produced by enteropathogenic Esherichia coli. J. Bacteriol. 1993, 175, 7391–7403.
[14]
Nataro, J.P.; Deng, Y.; Maneval, D.R.; German, A.L.; Martin, W.C.; Levine, M.M. Aggregative adherence fimbriae I of enteroaggregative Esherichia coli mediate adherence to HEp-2 cells and hemagglutination of human erythrocytes. Infect. Immun. 1992, 60, 2297–2304.
[15]
Bilge, S.S.; Clausen, C.R.; Lau, W.; Moseley, S.L. Molecular characterization of a fimbrial adhesin, F1845, mediating diffuse adherence of diarrhea-associated Esherichia coli to HEp-2 cells. J. Bacteriol. 1989, 171, 4281–4289.
[16]
Knutton, S.; McConnell, M.M.; Rowe, B.; McNeish, A.S. Adhesion and ultrastructural properties of human enterotoxigenic Esherichia coli producing colonization factor antigens III and IV. Infect. Immun. 1989, 57, 3364–3371.
[17]
Fitzhenry, R.J.; Pickard, D.J.; Hartland, E.L.; Reece, S.; Dougan, G.; Phillips, A.D.; Frankel, G. Intimin type influences the site of human intestinal mucosal colonisation by enterohaemorrhagic Esherichia coli O157:H7. Gut 2002, 50, 180–185, doi:10.1136/gut.50.2.180.
[18]
Phillips, A.D.; Frankel, G. Intimin-mediated tissue specificity in enteropathogenic Esherichia coli interaction with human intestinal organ cultures. J. Infect. Dis. 2000, 181, 1496–1500, doi:10.1086/315404.
[19]
Frankel, G.; Lider, O.; Hershkoviz, R.; Mould, A.P.; Kachalsky, S.G.; Candy, D.C.; Cahalon, L.; Humphries, M.J.; Dougan, G. The cell-binding domain of intimin from enteropathogenic Esherichia coli binds to beta1 integrins. J. Biol. Chem. 1996, 271, 20359–20364, doi:10.1074/jbc.271.34.20359.
[20]
Farfan, M.J.; Cantero, L.; Vidal, R.; Botkin, D.J.; Torres, A.G. Long polar fimbriae of enterohemorrhagic Esherichia coli O157:H7 bind to extracellular matrix proteins. Infect. Immun. 2011, 79, 3744–3750, doi:10.1128/IAI.05317-11.
[21]
Hicks, S.; Candy, D.C.; Phillips, A.D. Adhesion of enteroaggregative Esherichia coli to pediatric intestinal mucosa in vitro. Infect. Immun. 1996, 64, 4751–4760.
[22]
Knutton, S.; Shaw, R.K.; Bhan, M.K.; Smith, H.R.; McConnell, M.M.; Cheasty, T.; Williams, P.H.; Baldwin, T.J. Ability of enteroaggregative Esherichia coli strains to adhere in vitro to human intestinal mucosa. Infect. Immun. 1992, 60, 2083–2091.
Parsot, C. Shigella spp. and enteroinvasive Esherichia coli pathogenicity factors. FEMS Microbiol. Lett. 2005, 252, 11–18, doi:10.1016/j.femsle.2005.08.046.
[28]
Sansonetti, P. Host-pathogen interactions: The seduction of molecular cross talk. Gut 2002, 50, III2–III8, doi:10.1136/gut.50.suppl_3.iii2.
[29]
Sansonetti, P.J. Rupture, invasion and inflammatory destruction of the intestinal barrier by Shigella, making sense of prokaryote-eukaryote cross-talks. FEMS Microbiol. Rev. 2001, 25, 3–14.
[30]
Sansonetti, P.J.; D’Hauteville, H.; Ecobichon, C.; Pourcel, C. Molecular comparison of virulence plasmids in Shigella and enteroinvasive Esherichia coli. Ann. Microbiol. (Paris) 1983, 134A, 295–318.
[31]
Honda, T.; Cakir, N.; Arita, M.; Miwatani, T. Purification and characterization of the CS2 pili of colonization factor antigen II produced by human enterotoxigenic Esherichia coli. Microbiol. Immunol. 1989, 33, 265–275.
[32]
Isidean, S.D.; Riddle, M.S.; Savarino, S.J.; Porter, C.K. A systematic review of ETEC epidemiology focusing on colonization factor and toxin expression. Vaccine 2011, 29, 6167–6178.
[33]
Wolf, M.K. Occurrence, distribution, and associations of O and H serogroups, colonization factor antigens, and toxins of enterotoxigenic Esherichia coli. Clin. Microbiol. Rev. 1997, 10, 569–584.
[34]
Mu, X.Q.; Savarino, S.J.; Bullitt, E. The three-dimensional structure of CFA/I adhesion pili: Traveler’s diarrhea bacteria hang on by a spring. J. Mol. Biol. 2008, 376, 614–620, doi:10.1016/j.jmb.2007.10.067.
[35]
Pieroni, P.; Worobec, E.A.; Paranchych, W.; Armstrong, G.D. Identification of a human erythrocyte receptor for colonization factor antigen I pili expressed by H10407 enterotoxigenic Esherichia coli. Infect. Immun. 1988, 56, 1334–1340.
[36]
Jansson, L.; Tobias, J.; Lebens, M.; Svennerholm, A.M.; Teneberg, S. The major subunit, CfaB, of colonization factor antigen i from enterotoxigenic Esherichia coli is a glycosphingolipid binding protein. Infect. Immun. 2006, 74, 3488–3497, doi:10.1128/IAI.02006-05.
[37]
Levine, M.M.; Ristaino, P.; Sack, R.B.; Kaper, J.B.; Orskov, F.; Orskov, I. Colonization factor antigens I and II and type 1 somatic pili in enterotoxigenic Esherichia coli: Relation to enterotoxin type. Infect. Immun. 1983, 39, 889–897.
[38]
Oro, H.S.; Kolsto, A.B.; Wenneras, C.; Svennerholm, A.M. Identification of asialo GM1 as a binding structure for Esherichia coli colonization factor antigens. FEMS Microbiol. Lett. 1990, 60, 289–292.
[39]
Roy, S.P.; Rahman, M.M.; Yu, X.D.; Tuittila, M.; Knight, S.D.; Zavialov, A.V. Crystal structure of enterotoxigenic Esherichia coli colonization factor CS6 reveals a novel type of functional assembly. Mol. Microbiol. 2012, 86, 1100–1115.
[40]
Jansson, L.; Tobias, J.; Jarefjall, C.; Lebens, M.; Svennerholm, A.M.; Teneberg, S. Sulfatide recognition by colonization factor antigen CS6 from enterotoxigenic Esherichia coli. PLoS One 2009, 4, e4487.
[41]
Li, Y.F.; Poole, S.; Nishio, K.; Jang, K.; Rasulova, F.; McVeigh, A.; Savarino, S.J.; Xia, D.; Bullitt, E. Structure of CFA/I fimbriae from enterotoxigenic Esherichia coli. Proc. Natl. Acad. Sci. USA 2009, 106, 10793–10798, doi:10.1073/pnas.0812843106.
[42]
Thomas, L.V.; McConnell, M.M.; Rowe, B.; Field, A.M. The possession of three novel coli surface antigens by enterotoxigenic Esherichia coli strains positive for the putative colonization factor PCF8775. J. Gen. Microbiol. 1985, 131, 2319–2326.
[43]
Wolf, M.K.; de Haan, L.A.; Cassels, F.J.; Willshaw, G.A.; Warren, R.; Boedeker, E.C.; Gaastra, W. The CS6 colonization factor of human enterotoxigenic Esherichia coli contains two heterologous major subunits. FEMS Microbiol. Lett. 1997, 148, 35–42, doi:10.1111/j.1574-6968.1997.tb10263.x.
[44]
Ghosal, A.; Bhowmick, R.; Banerjee, R.; Ganguly, S.; Yamasaki, S.; Ramamurthy, T.; Hamabata, T.; Chatterjee, N.S. Characterization and studies of the cellular interaction of native colonization factor CS6 purified from a clinical isolate of enterotoxigenic Esherichia coli. Infect. Immun. 2009, 77, 2125–2135, doi:10.1128/IAI.01397-08.
[45]
Tobias, J.; Lebens, M.; Kallgard, S.; Nicklasson, M.; Svennerholm, A.M. Role of different genes in the CS6 operon for surface expression of Enterotoxigenic Esherichia coli colonization factor CS6. Vaccine 2008, 26, 5373–5380, doi:10.1016/j.vaccine.2008.07.091.
[46]
Tobe, T.; Sasakawa, C. Role of bundle-forming pilus of enteropathogenic Esherichia coli in host cell adherence and in microcolony development. Cell Microbiol. 2001, 3, 579–585, doi:10.1046/j.1462-5822.2001.00136.x.
[47]
Tobe, T.; Sasakawa, C. Species-specific cell adhesion of enteropathogenic Esherichia coli is mediated by type IV bundle-forming pili. Cell Microbiol. 2002, 4, 29–42, doi:10.1046/j.1462-5822.2002.00167.x.
[48]
Cleary, J.; Lai, L.C.; Shaw, R.K.; Straatman-Iwanowska, A.; Donnenberg, M.S.; Frankel, G.; Knutton, S. Enteropathogenic Esherichia coli (EPEC) adhesion to intestinal epithelial cells: Role of bundle-forming pili (BFP), EspA filaments and intimin. Microbiology 2004, 150, 527–538, doi:10.1099/mic.0.26740-0.
[49]
Bieber, D.; Ramer, S.W.; Wu, C.Y.; Murray, W.J.; Tobe, T.; Fernandez, R.; Schoolnik, G.K. Type IV pili, transient bacterial aggregates, and virulence of enteropathogenic Esherichia coli. Science 1998, 280, 2114–2118, doi:10.1126/science.280.5372.2114.
[50]
Oswald, E.; Schmidt, H.; Morabito, S.; Karch, H.; Marches, O.; Caprioli, A. Typing of intimin genes in human and animal enterohemorrhagic and enteropathogenic Esherichia coli: Characterization of a new intimin variant. Infect. Immun. 2000, 68, 64–71, doi:10.1128/IAI.68.1.64-71.2000.
[51]
Kelly, G.; Prasannan, S.; Daniell, S.; Fleming, K.; Frankel, G.; Dougan, G.; Connerton, I.; Matthews, S. Structure of the cell-adhesion fragment of intimin from enteropathogenic Esherichia coli. Nat. Struct. Biol. 1999, 6, 313–318, doi:10.1038/7545.
[52]
Frankel, G.; Candy, D.C.; Fabiani, E.; du-Bobie, J.; Gil, S.; Novakova, M.; Phillips, A.D.; Dougan, G. Molecular characterization of a carboxy-terminal eukaryotic-cell-binding domain of intimin from enteropathogenic Esherichia coli. Infect. Immun. 1995, 63, 4323–4328.
[53]
Muza-Moons, M.M.; Koutsouris, A.; Hecht, G. Disruption of cell polarity by enteropathogenic Esherichia coli enables basolateral membrane proteins to migrate apically and to potentiate physiological consequences. Infect. Immun. 2003, 71, 7069–7078, doi:10.1128/IAI.71.12.7069-7078.2003.
[54]
Torres, A.G.; Giron, J.A.; Perna, N.T.; Burland, V.; Blattner, F.R.; velino-Flores, F.; Kaper, J.B. Identification and characterization of lpfABCC'DE, a fimbrial operon of enterohemorrhagic Esherichia coli O157:H7. Infect. Immun. 2002, 70, 5416–5427.
[55]
Torres, A.G.; Kanack, K.J.; Tutt, C.B.; Popov, V.; Kaper, J.B. Characterization of the second long polar (LP) fimbriae of Esherichia coli O157:H7 and distribution of LP fimbriae in other pathogenic E. coli strains. FEMS Microbiol. Lett. 2004, 238, 333–344.
[56]
Fitzhenry, R.; Dahan, S.; Torres, A.G.; Chong, Y.; Heuschkel, R.; Murch, S.H.; Thomson, M.; Kaper, J.B.; Frankel, G.; Phillips, A.D. Long polar fimbriae and tissue tropism in Esherichia coli O157:H7. Microb. Infect. 2006, 8, 1741–1749, doi:10.1016/j.micinf.2006.02.012.
[57]
Jordan, D.M.; Cornick, N.; Torres, A.G.; an-Nystrom, E.A.; Kaper, J.B.; Moon, H.W. Long polar fimbriae contribute to colonization by Esherichia coli O157:H7 in vivo. Infect. Immun. 2004, 72, 6168–6171.
[58]
Czeczulin, J.R.; Balepur, S.; Hicks, S.; Phillips, A.; Hall, R.; Kothary, M.H.; Navarro-Garcia, F.; Nataro, J.P. Aggregative adherence fimbria II, a second fimbrial antigen mediating aggregative adherence in enteroaggregative Esherichia coli. Infect. Immun. 1997, 65, 4135–4145.
[59]
Bernier, C.; Gounon, P.; Le, B.C. Identification of an aggregative adhesion fimbria (AAF) type III-encoding operon in enteroaggregative Esherichia coli as a sensitive probe for detecting the AAF-encoding operon family. Infect. Immun. 2002, 70, 4302–4311, doi:10.1128/IAI.70.8.4302-4311.2002.
[60]
Boisen, N.; Struve, C.; Scheutz, F.; Krogfelt, K.A.; Nataro, J.P. New adhesin of enteroaggregative Esherichia coli related to the Afa/Dr/AAF family. Infect. Immun. 2008, 76, 3281–3292, doi:10.1128/IAI.01646-07.
[61]
Boll, E.J.; Struve, C.; Sander, A.; Demma, Z.; Nataro, J.P.; McCormick, B.A.; Krogfelt, K.A. The fimbriae of enteroaggregative Esherichia coli induce epithelial inflammation in vitro and in a human intestinal xenograft model. J. Infect. Dis. 2012, 206, 714–722, doi:10.1093/infdis/jis417.
[62]
Konar, M.; Sachin, O.; Priya, A.; Ghosh, S. Identification of key proteins of cultured human intestinal cells involved in interaction with enteroaggregative Esherichia coli. FEMS Immunol. Med. Microbiol. 2012, 66, 177–190, doi:10.1111/j.1574-695X.2012.00998.x.
[63]
Piva, I.C.; Pereira, A.L.; Ferraz, L.R.; Silva, R.S.; Vieira, A.C.; Blanco, J.E.; Blanco, M.; Blanco, J.; Giugliano, L.G. Virulence markers of enteroaggregative Esherichia coli isolated from children and adults with diarrhea in Brasilia, Brazil. J. Clin. Microbiol. 2003, 41, 1827–1832, doi:10.1128/JCM.41.5.1827-1832.2003.
[64]
Pereira, A.L.; Ferraz, L.R.; Silva, R.S.; Giugliano, L.G. Enteroaggregative Esherichia coli virulence markers: Positive association with distinct clinical characteristics and segregation into 3 enteropathogenic E. coli serogroups. J. Infect. Dis. 2007, 195, 366–374, doi:10.1086/510538.
[65]
Boisen, N.; Scheutz, F.; Rasko, D.A.; Redman, J.C.; Persson, S.; Simon, J.; Kotloff, K.L.; Levine, M.M.; Sow, S.; Tamboura, B.; et al. Genomic characterization of enteroaggregative Esherichia coli from children in Mali. J. Infect. Dis. 2012, 205, 431–444, doi:10.1093/infdis/jir757.
[66]
Monteiro-Neto, V.; Bando, S.Y.; Moreira-Filho, C.A.; Giron, J.A. Characterization of an outer membrane protein associated with haemagglutination and adhesive properties of enteroaggregative Esherichia coli O111:H12. Cell Microbiol. 2003, 5, 533–547, doi:10.1046/j.1462-5822.2003.00299.x.
[67]
Dudley, E.G.; Abe, C.; Ghigo, J.M.; Latour-Lambert, P.; Hormazabal, J.C.; Nataro, J.P. An IncI1 plasmid contributes to the adherence of the atypical enteroaggregative Esherichia coli strain C1096 to cultured cells and abiotic surfaces. Infect. Immun. 2006, 74, 2102–2114, doi:10.1128/IAI.74.4.2102-2114.2006.
[68]
Pereira, A.L.; Silva, T.N.; Gomes, A.C.; Araujo, A.C.; Giugliano, L.G. Diarrhea-associated biofilm formed by enteroaggregative Esherichia coli and aggregative Citrobacter freundii: A consortium mediated by putative F pili. BMC Microbiol. 2010, 10, 57, doi:10.1186/1471-2180-10-57.
[69]
Tacket, C.O.; Moseley, S.L.; Kay, B.; Losonsky, G.; Levine, M.M. Challenge studies in volunteers using Esherichia coli strains with diffuse adherence to HEp-2 cells. J. Infect. Dis. 1990, 162, 550–552, doi:10.1093/infdis/162.2.550.
[70]
Mansan-Almeida, R.; Pereira, A.L.; Giugliano, L.G. Diffusely adherent Esherichia coli strains isolated from children and adults constitute two different populations. BMC Microbiol. 2013, 13, 22, doi:10.1186/1471-2180-13-22.
[71]
Arikawa, K.; Meraz, I.M.; Nishikawa, Y.; Ogasawara, J.; Hase, A. Interleukin-8 secretion by epithelial cells infected with diffusely adherent Esherichia coli possessing Afa adhesin-coding genes. Microbiol. Immunol. 2005, 49, 493–503.
[72]
Fujihara, S.; Arikawa, K.; Aota, T.; Tanaka, H.; Nakamura, H.; Wada, T.; Hase, A.; Nishikawa, Y. Prevalence and properties of diarrheagenic Esherichia coli among healthy individuals in Osaka City, Japan. Jpn. J. Infect. Dis. 2009, 62, 318–323.
Baranov, V.; Hammarstrom, S. Carcinoembryonic antigen (CEA) and CEA-related cell adhesion molecule 1 (CEACAM1), apically expressed on human colonic M cells, are potential receptors for microbial adhesion. Histochem. Cell Biol. 2004, 121, 83–89, doi:10.1007/s00418-003-0613-5.
[75]
Guignot, J.; Peiffer, I.; Bernet-Camard, M.F.; Lublin, D.M.; Carnoy, C.; Moseley, S.L.; Servin, A.L. Recruitment of CD55 and CD66e brush border-associated glycosylphosphatidylinositol-anchored proteins by members of the Afa/Dr diffusely adhering family of Esherichia coli that infect the human polarized intestinal Caco-2/TC7 cells. Infect. Immun. 2000, 68, 3554–3563.
[76]
O'Ryan, M.; Prado, V.; Pickering, L.K. A millennium update on pediatric diarrheal illness in the developing world. Semin. Pediatr. Infect. Dis. 2005, 16, 125–136, doi:10.1053/j.spid.2005.12.008.
[77]
Lamberti, L.M.; Fischer Walker, C.L.; Noiman, A.; Victora, C.; Black, R.E. Breastfeeding and the risk for diarrhea morbidity and mortality. BMC Public Health 2011, 11, S15.
[78]
Svennerholm, A.M.; Tobias, J. Vaccines against enterotoxigenic Esherichia coli. Exp. Rev. Vaccines. 2008, 7, 795–804, doi:10.1586/14760584.7.6.795.
[79]
Tobias, J.; Svennerholm, A.M. Strategies to overexpress enterotoxigenic Esherichia coli (ETEC) colonization factors for the construction of oral whole-cell inactivated ETEC vaccine candidates. Appl. Microbiol. Biotechnol. 2012, 93, 2291–2300, doi:10.1007/s00253-012-3930-6.
[80]
Work Group on Breastfeeding. Breastfeeding and the use of human milk—American Academy of Pediatrics. Pediatrics 1997, 100, 1035–1039, doi:10.1542/peds.100.6.1035.
[81]
Gartner, L.M.; Morton, J.; Lawrence, R.A.; Naylor, A.J.; O’Hare, D.; Schanler, R.J.; Eidelman, A.I. Breastfeeding and the use of human milk. Pediatrics 2005, 115, 496–506, doi:10.1542/peds.2004-2491.
[82]
Giugliano, L.G.; Ribeiro, S.T.; Vainstein, M.H.; Ulhoa, C.J. Free secretory component and lactoferrin of human milk inhibit the adhesion of enterotoxigenic Esherichia coli. J. Med. Microbiol. 1995, 42, 3–9, doi:10.1099/00222615-42-1-3.
[83]
Morrow, A.L.; Ruiz-Palacios, G.M.; Jiang, X.; Newburg, D.S. Human-milk glycans that inhibit pathogen binding protect breast-feeding infants against infectious diarrhea. J. Nutr. 2005, 135, 1304–1307.
[84]
Coppa, G.V.; Zampini, L.; Galeazzi, T.; Facinelli, B.; Ferrante, L.; Capretti, R.; Orazio, G. Human milk oligosaccharides inhibit the adhesion to Caco-2 cells of diarrheal pathogens: Esherichia coli, Vibrio cholerae, and Salmonella fyris. Pediatr. Res. 2006, 59, 377–382, doi:10.1203/01.pdr.0000200805.45593.17.
[85]
Oliveira, I.R.; de Araujo, A.N.; Bao, S.N.; Giugliano, L.G. Binding of lactoferrin and free secretory component to enterotoxigenic Esherichia coli. FEMS Microbiol. Lett. 2001, 203, 29–33.
[86]
De Araujo, A.N.; Giugliano, L.G. Lactoferrin and free secretory component of human milk inhibit the adhesion of enteropathogenic Esherichia coli to HeLa cells. BMC Microbiol. 2001, 1, 25, doi:10.1186/1471-2180-1-25.
[87]
Ochoa, T.J.; Noguera-Obenza, M.; Ebel, F.; Guzman, C.A.; Gomez, H.F.; Cleary, T.G. Lactoferrin impairs type III secretory system function in enteropathogenic Esherichia coli. Infect. Immun. 2003, 71, 5149–5155, doi:10.1128/IAI.71.9.5149-5155.2003.
[88]
Martin-Sosa, S.; Martin, M.J.; Hueso, P. The sialylated fraction of milk oligosaccharides is partially responsible for binding to enterotoxigenic and uropathogenic Esherichia coli human strains. J. Nutr. 2002, 132, 3067–3072.
[89]
Nascimento de, A.A.; Giugliano, L.G. Human milk fractions inhibit the adherence of diffusely adherent Esherichia coli (DAEC) and enteroaggregative E. coli (EAEC) to HeLa cells. FEMS Microbiol. Lett. 2000, 184, 91–94.
[90]
Kawasaki, Y.; Tazume, S.; Shimizu, K.; Matsuzawa, H.; Dosako, S.; Isoda, H.; Tsukiji, M.; Fujimura, R.; Muranaka, Y.; Isihida, H. Inhibitory effects of bovine lactoferrin on the adherence of enterotoxigenic Esherichia coli to host cells. Biosci. Biotechnol. Biochem. 2000, 64, 348–354, doi:10.1271/bbb.64.348.
[91]
Flores-Villasenor, H.; Canizalez-Roman, A.; de la, G.M.; Nazmi, K.; Bolscher, J.G.; Leon-Sicairos, N. Lactoferrin and lactoferrin chimera inhibit damage caused by enteropathogenic Esherichia coli in HEp-2 cells. Biochimie 2012, 94, 1935–1942, doi:10.1016/j.biochi.2012.05.011.
[92]
Flores-Villasenor, H.; Canizalez-Roman, A.; Velazquez-Roman, J.; Nazmi, K.; Bolscher, J.G.; Leon-Sicairos, N. Protective effects of lactoferrin chimera and bovine lactoferrin in a mouse model of enterohaemorrhagic Esherichia coli O157:H7 infection. Biochem. Cell Biol. 2012, 90, 405–411, doi:10.1139/o11-089.
[93]
Ochoa, T.J.; Brown, E.L.; Guion, C.E.; Chen, J.Z.; McMahon, R.J.; Cleary, T.G. Effect of lactoferrin on enteroaggregative E. coli (EAEC). Biochem. Cell Biol. 2006, 84, 369–376, doi:10.1139/o06-053.
[94]
Perrier, C.; Sprenger, N.; Corthesy, B. Glycans on secretory component participate in innate protection against mucosal pathogens. J. Biol. Chem. 2006, 281, 14280–14287, doi:10.1074/jbc.M512958200.
[95]
Gonzalez-Chavez, S.A.; Arevalo-Gallegos, S.; Rascon-Cruz, Q. Lactoferrin: Structure, function and applications. Int. J. Antimicrob. Agents 2009, 33, 301–308.
Steiner, T.S.; Lima, A.A.; Nataro, J.P.; Guerrant, R.L. Enteroaggregative Esherichia coli produce intestinal inflammation and growth impairment and cause interleukin-8 release from intestinal epithelial cells. J. Infect. Dis. 1998, 177, 88–96, doi:10.1086/513809.
[98]
Greenberg, D.E.; Jiang, Z.D.; Steffen, R.; Verenker, M.P.; DuPont, H.L. Markers of inflammation in bacterial diarrhea among travelers, with a focus on enteroaggregative Esherichia coli pathogenicity. J. Infect. Dis. 2002, 185, 944–949, doi:10.1086/339617.
[99]
Snoeck, V.; Peters, I.R.; Cox, E. The IgA system: A comparison of structure and function in different species. Vet. Res. 2006, 37, 455–467, doi:10.1051/vetres:2006010.
[100]
Phalipon, A.; Corthesy, B. Novel functions of the polymeric Ig receptor: Well beyond transport of immunoglobulins. Trends Immunol. 2003, 24, 55–58, doi:10.1016/S1471-4906(02)00031-5.
[101]
Newburg, D.S. Oligosaccharides in human milk and bacterial colonization. J. Pediatr. Gastroenterol. Nutr. 2000, 30, S8–S17, doi:10.1097/00005176-200002000-00007.
[102]
Cravioto, A.; Tello, A.; Villafan, H.; Ruiz, J.; del, V.S.; Neeser, J.R. Inhibition of localized adhesion of enteropathogenic Esherichia coli to HEp-2 cells by immunoglobulin and oligosaccharide fractions of human colostrum and breast milk. J. Infect. Dis. 1991, 163, 1247–1255, doi:10.1093/infdis/163.6.1247.
[103]
Mata, L.J.; Wyatt, R.G. The uniqueness of human milk. Host resistance to infection. Am. J. Clin. Nutr. 1971, 24, 976–986.
[104]
Caceres, A.; Mata, L.J. Indirect hemagglutination for the study of antibodies to enterobacteriaceae. Rev. Latinoam. Microbiol. 1970, 12, 137–144.
[105]
Hanson, L.A.; Winberg, J. Breast milk and defence against infection in the newborn. Arch. Dis. Child 1972, 47, 845–848, doi:10.1136/adc.47.256.845.
[106]
Jelliffe, D.B. Active anti-infective properties of human milk. Lancet 1971, 2, 167–168, doi:10.1016/S0140-6736(71)92345-2.
[107]
Bessler, H.C.; de Oliveira, I.R.; Giugliano, L.G. Human milk glycoproteins inhibit the adherence of Salmonella typhimurium to HeLa cells. Microbiol. Immunol. 2006, 50, 877–882.
[108]
Willer, E.M.; Lima, R.L.; Giugliano, L.G. In vitro adhesion and invasion inhibition of Shigella dysenteriae, Shigella flexneri and Shigella sonnei clinical strains by human milk proteins. BMC Microbiol. 2004, 4, 18, doi:10.1186/1471-2180-4-18.