Effect of Aminophenyl and Aminothiahexyl α-D-Glycosides of the Manno-, Gluco-, and Galacto-Series on Type 1 Fimbriae-Mediated Adhesion of Escherichia coli
Adhesion of bacteria to the glycosylated surface of their target cells is typically mediated by fimbrial lectins, exposed on the bacterial surface. Among the best-investigated and most important fimbriae are type 1 fimbriae, for which α-d-mannopyranoside-specificity has been described. This carbohydrate specificity is mediated by the type 1 fimbrial lectin FimH. In this account, we have employed four different set-ups to assay type 1 fimbriae-mediated bacterial adhesion, including tailor-made glycoarrays. The focus of our study was on testing FimH specificity with regard to the glycone part of a glycosidic ligand by testing a series of synthetic α-mannosides, as well as α-glucosides and α-galactosides. Unexpectedly, it was found that in solution all tested aminothiahexyl glycosides inhibit bacterial adhesion but that this effect is unspecific. Instead it is due to cytotoxicity of the respective glycosides at high mm concentrations.
Melican, K.; Sandoval, R.M.; Kader, A.; Josefsson, L.; Tanner, G.A.; Molitoris, B.A.; Richter-Dahlfors, A. Uropathogenic Escherichia coli P and type 1 fimbriae act in synergy in a living host to facilitate renal colonization leading to nephron obstruction. PLoS Pathog. 2011, 7, e1001298, doi:10.1371/journal.ppat.1001298.
[3]
Klemm, P.; Schembri, M.A. Bacterial adhesins: Function and structure. Int. J. Med. Microbiol. 2000, 290, 27–35, doi:10.1016/S1438-4221(00)80102-2.
[4]
Ohlsen, K.; Oelschlaeger, T.A.; Hacker, J.; Khan, A.S. Carbohydrate receptors of bacterial adhesins: Implications and reflections. Top. Curr. Chem. 2009, 288, 109–120.
[5]
Kau, A.L.; Hunstad, D.A.; Hultgren, S.J. Interaction of uropathogenic Escherichia coli with host uroepithelium. Curr. Opin. Microbiol. 2005, 8, 54–59.
[6]
Kim, K.S. Current concepts on the pathogenesis of Escherichia coli meningitis: Implications for therapy and prevention. Curr. Opin. Infect. Dis. 2012, 25, 273–280, doi:10.1097/QCO.0b013e3283521eb0.
[7]
Chassaing, B.; Darfeuille-Michaud, A. The σE pathway is involved in biofilm formation by Crohn’s disease-associated adherent Escherichia coli. J. Bacteriol. 2013, 195, 76–84, doi:10.1128/JB.01079-12.
[8]
Ofek, I.; Beachey, E.H. Mannose Binding and Epithelial Cell Adherence of Escherichia coli. Infect. Immun. 1978, 22, 247–254.
[9]
Firon, N.; Ofek, I.; Sharon, N. Carbohydrate specificity of the surface lectins of Escherichia coli, Klebsiella pneumoniae, and Salmonella typhimurium. Carbohydr. Res. 1983, 120, 235–249, doi:10.1016/0008-6215(83)88019-7.
[10]
Firon, N.; Ashkenazi, S.; Mirelman, D.; Ofek, I.; Sharon, N. Aromatic alpha-glycosides of mannose are powerful inhibitors of the adherence of type 1 fimbriated Escherichia coli to yeast and intestinal epithelial cells. Infect. Immun. 1987, 55, 472–476.
[11]
Neeser, J.R.; Koellreutter, B.; Wuersch, P. Oligomannoside-type glycopeptides inhibiting adhesion of Escherichia coli strains mediated by type 1 pili: Preparation of potent inhibitors from plant glycoproteins. Infect. Immun. 1986, 52, 428–436.
[12]
Sharon, N. Bacterial lectins, cell-cell recognition and infectious disease. FEBS Lett. 1987, 217, 145–157, doi:10.1016/0014-5793(87)80654-3.
[13]
Crocker, P.R.; Feizi, T. Carbohydrate recognition systems: Functional triads in cell-cell interactions. Curr. Opin. Struct. Biol. 1996, 6, 679–691, doi:10.1016/S0959-440X(96)80036-4.
[14]
Lindhorst, T.K.; Kieburg, C.; Krallmann-Wenzel, U. Inhibition of the type 1 fimbriae-mediated adhesion of Escherichia coli to erythrocytes by multiantennary α-mannosyl clusters: The effect of multivalency. Glycoconj. J. 1998, 15, 605–613, doi:10.1023/A:1006920027641.
[15]
Nagahori, N.; Lee, R.T.; Nishimura, S.-I.; Pagé, D.; Roy, R.; Lee, Y.C. Inhibition of Adhesion of Type 1 Fimbriated Escherichia coli to Highly Mannosylated Ligands. Chem. Bio. Chem. 2002, 3, 836–844, doi:10.1002/1439-7633(20020902)3:9<836::AID-CBIC836>3.0.CO;2-2.
[16]
Dubber, M.; Sperling, O.; Lindhorst, T.K. Oligomannoside mimetics by glycosylation of ‘octopus glycosides’ and their investigation as inhibitors of type 1 fimbriated-mediated adhesion of Escherichia coli. Org. Biomol. Chem. 2006, 4, 3901–3912, doi:10.1039/b610741a.
[17]
Touaibia, M.; Wellens, A.; Shiao, T.C.; Wang, Q.; Sirois, S.; Bouckaert, J.; Roy, R. Mannosylated G(0) dendrimers with nanomolar affinities to Escherichia coli FimH. Chem. Med. Chem. 2007, 2, 1190–1201.
[18]
Heidecke, C.; Lindhorst, T.K. Iterative Synthesis of Spacered Glycodendrons as Oligomannoside Mimetics and Evaluation of Their Antiadhesive Properties. Chem. Eur. J. 2007, 13, 9056–9067, doi:10.1002/chem.200700787.
[19]
Touaibia, M.; Roy, R. Glycodendrimers as anti-adhesion drugs against type 1 fimbriated E. coli uropathogenic infections. Mini Rev. Med. Chem. 2007, 7, 1270–1283, doi:10.2174/138955707782795610.
[20]
Pieters, R.J. Intervention with Bacterial Adhesion by Multivalent Carbohydrates. Med. Res. Rev. 2007, 27, 796–816, doi:10.1002/med.20089.
[21]
Gouin, S.G.; Wellens, A.; Bouckaert, J.; Kovensky, J. Synthetic multimeric heptyl mannosides as potent antiadhesives of uropathogenic Escherichia coli. Chem. Med. Chem. 2009, 4, 749–755.
[22]
Chabre, Y.M.; Roy, R. Design and creativity in synthesis of multivalent neoglycoconjugates. Adv. Carbohydr. Chem. Biochem. 2010, 63, 165–393, doi:10.1016/S0065-2318(10)63006-5.
Papadopoulos, A.; Chieh Shiao, T.; Roy, R. Diazo Transfer and Click Chemistry in the Solid Phase Syntheses of Lysine-Based Glycodendrimers as Antagonists against Escherichia coli FimH. Mol. Pharmaceutics 2012, 9, 394–403, doi:10.1021/mp200490b.
[25]
Bouckaert, J.; Berglund, J.; Schembri, M.A.; De Genst, E.; Cools, L.; Wuhrer, M.; Hung, C.-S.; Pinkner, J.; Sl?tteg?rd, R.; Zavialov, A.; et al. Receptor binding studies disclose a novel class of high-affinity inhibitors of the Escherichia coli FimH adhesion. Mol. Microbiol. 2005, 55, 441–455.
[26]
Klein, T.; Abgottspon, D.; Wittwer, M.; Rabbani, S.; Herold, J.; Jiang, X.; Kleeb, S.; Lüthi, C.; Scharenberg, M.; Bezencon, J.; et al. FimH antagonist for the oral treatment of urinary tract infections: From design and synthesis to in vitro and in vivo evaluation. J. Med. Chem. 2010, 53, 8627–8641, doi:10.1021/jm101011y.
[27]
Grabosch, C.; Hartmann, M.; Schmidt-Lassen, J.; Lindhorst, T.K. Squaric Acid Monoamide Mannosides as Ligands for the Bacterial Lectin FimH: Covalent inhibition or not? Chem. Bio. Chem. 2011, 12, 1066–1074, doi:10.1002/cbic.201000774.
[28]
Zuilhof, H.; Pinkner, J.S.; Ford, B.; Chorell, E.; Crowley, J.M.; Cusumano, C.K.; Campbell, S.; Henderson, J.P.; Hultgren, S.J.; Janetka, J.W. Lead Optimization Studies on FimH Antagonists: Discovery of potent and orally bioavailable ortho-substituted biphenyl mannosides. J. Med. Chem. 2012, 55, 3945–3959.
[29]
Jiang, X.; Abgottspon, D.; Kleeb, S.; Rabbani, S.; Scharenberg, M.; Wittwer, M.; Haug, M.; Schwardt, O.; Ernst, B. Anti-adhesion therapy for urinary tract infections—A balanced PK/PD-profile proved to be key for success. J. Med. Chem. 2012, 55, 4700–4713, doi:10.1021/jm300192x.
[30]
Abgottspon, D.; Ernst, B. In vivo Evaluation of FimH antagonists—A novel class of antimicrobials for the treatment of urinary tract infection. Chimia 2012, 66, 166–169, doi:10.2533/chimia.2012.166.
[31]
Hartmann, M.; Lindhorst, T.K. The bacterial lectin FimH, a target for drug discovery—Carbohydrate inhibitors of type 1 fimbriae-mediated bacterial adhesion. Eur. J. Org. Chem. 2011, doi:10.1002/ejoc.201100407.
[32]
Bernardi, A.; Jiménez-Barbero, J.; Casnati, A.; de Castro, C.; Darbre, T.; Fieschi, F.; Finne, J.; Funken, H.; Jaeger, K.E.; Lahmann, M.; et al. Multivalent glycoconjugates as anti-pathogenic agents. Chem. Soc. Rev. 2013, 42, 4709–4727, doi:10.1039/c2cs35408j.
[33]
Waksman, G.; Hultgren, S.J. Structural biology of the chaperone-usher pathway of pilus biogenesis. Nat. Rev. Microbiol. 2009, 7, 765–774, doi:10.1038/nrmicro2220.
[34]
Hung, C.-S.; Bouckaert, J.; Hung, D.; Pinkner, J.; Widberg, C.; DeFusco, A.; Auguste, C.G.; Strouse, R.; Langermann, S.; Waksman, G.; et al. Structure basis of tropism of Escherichia coli to the bladder during urinary tract infection. Mol. Microbiol. 2002, 44, 903–915, doi:10.1046/j.1365-2958.2002.02915.x.
[35]
Wellens, A.; Garofalo, C.; Nguyen, H.; van Gerven, N.; Sl?ttegard, R.; Hernalsteens, J.P.; Wyns, L.; Oscarson, S.; de Greve, H.; Hultgren, S.; et al. Intervening with urinary tract infections using anti-adhesives based on the crystal structure of the FimH-oligomannose-3 complex. PLoS One 2008, 3, e2040, doi:10.1371/journal.pone.0002040.
[36]
Knight, S.D.; Bouckaert, J. Structure, function, and assembly of type 1 fimbriae. Top. Curr. Chem. 2009, 288, 67–107, doi:10.1007/128_2008_13.
[37]
Wellens, A.; Lahmann, M.; Touaibia, M.; Vaucher, J.; Oscarson, S.; Roy, R.; Remaut, H.; Bouckaert, J. The tyrosine gate as a potential entropic lever in the receptor-binding site of the bacterial adhesin FimH. Biochemistry 2012, 51, 4790–4799, doi:10.1021/bi300251r.
[38]
Sperling, O.; Fuchs, A.; Lindhorst, T.K. Evaluation of the carbohydrate recognition domain of the bacterial adhesion FimH: Design, synthesis and binding properties of mannoside ligands. Org. Biomol. Chem. 2006, 4, 3913–1922, doi:10.1039/b610745a.
[39]
Ernst, B.; Magnani, J.L. From carbohydrate leads to glycomimetic drugs. Nat. Rev. Drug Discov. 2009, 8, 661–677, doi:10.1038/nrd2852.
[40]
Ofek, I.; Hasty, D.L.; Sharon, N. Anti-adhesion therapy of bacterial diseases: Prospects and problems. FEMS Immunol. Med. Microbiol. 2003, 38, 181–191, doi:10.1016/S0928-8244(03)00228-1.
[41]
Sharon, N. Carbohydrates as future anti-adhesion drugs for infectious disease. Biochim. Biophys. Acta. 2006, 1760, 527–537.
[42]
Totsika, M.; Kostakioti, M.; Hannan, T.J.; Upton, M.; Beatson, S.A.; Janetka, J.W.; Hultgren, S.J.; Schembri, M.A. A FimH inhibitor prevents acute bladder infection and treats chronic cystitis caused by multidrug-resistant uropathogenic Escherichia coli ST131. J. Infect. Dis. 2013, doi:10.1093/infdis/jit245.
[43]
Thomas, W. Catch bonds in adhesion. Annu. Rev. Biomed. Eng. 2008, 10, 39–57.
[44]
Le Trong, I.; Aprikian, P.; Kidd, B.A.; Forero-Shelton, M.; Tchesnokova, V.; Rajagopal, P.; Rodgriguez, V.; Interlandi, G.; Klevit, R.; Vogel, V.; et al. Structural basis for mechanical force regulation of the adhesin FimH via finger trap-like beta sheet twisting. Cell 2010, 141, 645–655, doi:10.1016/j.cell.2010.03.038.
[45]
Ambrosi, M.; Cameron, N.R.; Davis, B.G. Lectins: Tools for the molecular understanding of the glycocode. Org. Biomol. Chem. 2005, 3, 1593–1608, doi:10.1039/b414350g.
[46]
Hartmann, M.; Horst, A.K.; Klemm, P.; Lindhorst, T.K. A kit for the investigation of live Escherichia coli cell adhesion to glycosylated surfaces. Chem. Commun. 2010, 46, 330–332, doi:10.1039/b922525k.
[47]
Reisner, A.; Haagensen, J.A.J.; Schembri, M.A.; Zechner, E.L.; Molin, S. Development and maturation of Escherichia coli K-12 biofilms. Mol. Microbiol. 2003, 48, 933–946, doi:10.1046/j.1365-2958.2003.03490.x.
Horlacher, T.; Seeberger, P.H. Carbohydrate arrays as tools for research and diagnostics. Chem. Soc. Rev. 2008, 37, 1414–1422, doi:10.1039/b708016f.
[50]
Liu, Y.; Palma, A.S.; Feizi, T. Carbohydrate microarrays: Key developments in glycobiology. Biol. Chem. 2009, 390, 647–656.
[51]
Grabosch, C.; Kolbe, K.; Lindhorst, T.K. Glycoarrays by a new tandem noncovalent-covalent modification of polystyrene microtiter plates and their interrogation with live cells. Chem. Bio. Chem. 2012, 13, 1874–1879, doi:10.1002/cbic.201200365.
[52]
Wehner, J.W.; Weissenborn, M.J.; Hartmann, M.; Gray, C.J.; ?ardzík, R.; Eyers, C.E.; Flitsch, S.L.; Lindhorst, T.K. Dual purpose S-trityl-linkers for glycoarray fabrication on both polystyrene and gold. Org. Biomol. Chem. 2012, 10, 8919–8926, doi:10.1039/c2ob26118a.
[53]
Narla, S.N.; Sun, X.-L. Orientated glyco-macroligand formation based on site-speci?c immobilization of O-cyanate chain-end functionalized glycopolymer. Org. Biomol. Chem. 2011, 9, 845–850, doi:10.1039/c0ob00556h.
Siebold, C.; Flükiger, K.; Beutler, R.; Erni, B. Carbohydrate transporters of the bacterial phosphoenolpyruvate: Sugar phosphotransferase systems (PTS). FEBS Lett. 2001, 504, 104–111, doi:10.1016/S0014-5793(01)02705-3.
[56]
Hartmann, M.; Papavlassopoulos, H.; Chandrasekaran, V.; Grabosch, C.; Beiroth, F.; Lindhorst, T.K.; R?hl, C. Activity and cyctotoxicity of five synthetic mannosides as inhibitors of bacterial adhesion. FEBS Lett. 2012, 586, 1459–1465, doi:10.1016/j.febslet.2012.03.059.
[57]
Sato, M.; Takemura, M.; Atarashi, S.; Higashi, K.; Nagahara, T.; Furukawa, M. Modification of the cysteamine side chain of thienamycin. J. Antibiot. 1987, 9, 1292–1302.
[58]
Tew, G.N.; Liu, D.; Chen, B.; Doerksen, R.J.; Kaplan, J.; Carroll, P.J.; Klein, M.K.; DeGrado, W.F. De novo design of biomimetic antimicrobial polymers. PNAS 2002, 99, 5110–5114.
[59]
Choi, J.; Kim, J.; Kim, K.; Yang, S.-T.; Kim, J.-I.; Jon, S. A rationally designed macrocyclic cavitand that kills bacteria with high efficacy and good selectivity. Chem. Commun. 2007, doi:10.1039/B617005F.
[60]
Koteswara Rao, V.; Janardhan Rao, A.; Subba Reddy, S.; Naga Raju, C.; Visweswara Rao, P.; Ghosh, S.K. Synthesis, spectral characterization and biological evaluation of phosphorylated derivatives of galanthamine. Eur. J. Med. Chem. 2010, 45, 203–209, doi:10.1016/j.ejmech.2009.09.045.
[61]
Dondoni, A.; Massi, A.; Nanni, P.; Roda, A. A new ligation strategy for peptide and protein glycosylation: Photoinduced thiol-ene coupling. Chem. Eur. J. 2009, 15, 11444–11449, doi:10.1002/chem.200901746.