全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biology  2013 

The Vulnerability of Threatened Species: Adaptive Capability and Adaptation Opportunity

DOI: 10.3390/biology2030872

Keywords: climate change, adaptation capacity, vulnerability, adaptation capability, adaptation opportunity, conservation, mammals, priority species, marine

Full-Text   Cite this paper   Add to My Lib

Abstract:

Global targets to halt the loss of biodiversity have not been met, and there is now an additional Aichi target for preventing the extinction of known threatened species and improving their conservation status. Climate change increasingly needs to be factored in to these, and thus there is a need to identify the extent to which it could increase species vulnerability. This paper uses the exposure, sensitivity, and adaptive capacity framework to assess the vulnerability of a selection of WWF global priority large mammals and marine species to climate change. However, it divides adaptive capacity into adaptive capability and adaptation opportunity, in order to identify whether adaptation is more constrained by the biology of the species or by its environmental setting. Lack of evidence makes it difficult to apply the framework consistently across the species, but it was found that, particularly for the terrestrial mammals, adaptation opportunities seems to be the greater constraint. This framework and analysis could be used by conservationists and those wishing to enhance the resilience of species to climate change.

References

[1]  Convention on Biological Diversity, Sixth meeting of the Conference of the Parties. 2002. Available online: http://www.cbd.int/doc/decisions/cop-06/full/cop-06-dec-en.pdf/ (accessed on 6 June 2010).
[2]  Millennium Ecosystem Assessment. Ecosystems and Human Wellbeing: Synthesis; Island Press: Washington, DC, USA, 2005; p. 160.
[3]  Secretariat of the Convention on Biological Diversity. Global Biodiversity Outlook 3; Secretariat of the Convention on Biological Diversity: Montreal, Canada, 2010; p. 94.
[4]  Leadley, P.; Pereira, H.M.; Alkemade, R.; Fernandez-Manjarrés, J.F.; Proen?a, V.; Scharlemann, J.P.W.; Walpole, M.J. Biodiversity Scenarios: Projections of 21st century Change in Biodiversity and Associated Ecosystem Services; Secretariat of the Convention on Biological Diversity: Montreal, PQ, Canada, 2010; p. 132.
[5]  Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42, doi:10.1038/nature01286.
[6]  Dawson, T.P.; Jackson, S.T.; House, J.I.; Prentice, I.C.; Mace, G.M. Beyond predictions: Biodiversity conservation in a changing climate. Science 2011, 332, 53–58, doi:10.1126/science.1200303.
[7]  Fischlin, A.; Midgley, G.F.; Price, J.T.; Leemans, R.; Gopal, B.; Turley, C.; Rounsevell, M.D.A.; Dube, O.P.; Tarazona, J.; Velichko, A.A. Ecosystems, their properties, goods, and services. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 211–272.
[8]  The Strategic Plan for Biodiversity 2011–2020 and the Aichi Biodiversity Targets. 2010. Available online: http://www.cbd.int/cop10/doc/default.shtml/ (accessed on 29 September 2012).
[9]  Chin, A.; Kyne, P.M.; Walker, T.I.; McAuley, R.B. An integrated risk assessment for climate change: Analysing the vulnerability of sharks and rays on Australia’s Great Barrier Reef. Glob. Chang. Biol. 2010, 16, 1936–1953, doi:10.1111/j.1365-2486.2009.02128.x.
[10]  Summers, D.M.; Bryan, B.A.; Crossman, N.D.; Meyer, W.S. Species vulnerability to climate change: Impacts on spatial conservation priorities and species representation. Glob. Chang Biol. 2012, 18, 2335–2348, doi:10.1111/j.1365-2486.2012.02700.x.
[11]  Foden, W.; Mace, G.; Vié, J.-C.; Angulo, A.; Butchart, S.; DeVantier, L.; Dublin, H.; Gutsche, A.; Stuart, S.; Turak, E. Species susceptibility to climate change impacts. In The 2008 Review of the IUCN List of Threatened Species; Vié, J.-C., Hilton-Taylor, C., Stuart, S.N., Eds.; IUCN: Gland, Switzerland, 2008.
[12]  Galbraith, H.; Price, J. A Framework for Categorizing the Relative Vulnerability of Threatened and Endangered Species to Climate Change; Glick, P., Stein, B.A., Edelson, N.A., Eds.; U.S. Environmental Protection Agency, Office of Research and Development: Washington, DC, USA, 2011; pp. 90–96.
[13]  England Biodiversity Strategy—Climate Change Adaptation Principles Conserving Biodiversity in a Changing Climate; Smithers, R., Cowan, C., Harley, M.J., Hopkins, J.J., Pontier, H., Watts, O., Eds.; Defra: London, UK, 2008; p. 16.
[14]  Mawdsley, J.; O’Malley, R.; Ojima, D. A review of climate-change adaptation strategies for wildlife management and biodiversity conservation. Conserv. Biol. 2008, 23, 1080–1089, doi:10.1111/j.1523-1739.2009.01264.x.
[15]  Intergovernmental panel on climate change climate change. Impacts, adaptation and vulnerability. In Working Group II Report; Mc Carthy, J.J., Canzianai, O.F., Leary, N.A., Dokken, D.J., White, K.S., Eds.; Cambridge University Press: Cambridge, UK, 2001; p. 1032.
[16]  Intergovernmental panel on climate change climate change. Impacts, adaptation and vulnerability. In Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; p. 976.
[17]  Intergovernmental panel on climate change. Managing the risks of extreme events and disasters to advance climate change adaptation. In A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., et al, Eds.; Cambridge University Press: Cambridge, UK, New York, NY, USA, 2012; p. 582.
[18]  WWF international. Global Programme Framework 2008–2020; WWF International: Gland, Switzerland, 2008.
[19]  Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Avery, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, New York, NY, USA, 2007.
[20]  Conservation International. Downscaled Future Climate Scenarios 2.5-Minute Resolution. Available online: http://futureclimates.conservation.org/ (accessed on 3 August 2010).
[21]  Tabor, K.; Williams, J.W. Globally downscaled climate projections for assessing the conservation impacts of climate change. Ecol. Appl. 2010, 20, 554–565, doi:10.1890/09-0173.1.
[22]  WorldClim—Global Climate Data. Available online: http://www.worldclim.org/ (accessed on 3 August 2010).
[23]  IPCC Data Distribution Centre. Available online: http://www.ipcc-data.org/ (accessed on 3 August 2010).
[24]  The IUCN List of Threatened Species. Available online: http://www.iucnredlist.org/ (accessed on 2 July 2010).
[25]  State of the World’s Sea Turtles. Available online: http://seamap.env.duke.edu/swot/ (accessed on 16 July 2010).
[26]  Kot, C.Y.; DiMatteo, A.; Fujioka, E.; Wallace, B.; Hutchinson, B.; Cleary, J.; Halpin, P.; Mast, R. The State of the World’s Sea Turtles Online Database: Data Provided by the SWOT Team and Hosted on OBIS-SEAMAP; Oceanic Society, Conservation International, IUCN Marine Turtle Specialist Group (MTSG), and Marine Geospatial Ecology Lab, Duke University: Durham, NC, USA, 2012.
[27]  Halpin, P.N.; Read, A.J.; Fujioka, E.; Best, B.D.; Donnelly, B.; Hazen, L.J.; Kot, C.; Urian, K.; LaBrecque, E.; Dimatteo, A.; et al. OBIS-SEAMAP: The world data center for marine mammal, sea bird, and sea turtle distributions. Oceanography 2009, 22, 104–115, doi:10.5670/oceanog.2009.42.
[28]  Jones, C.; Lowe, J.; Liddicoat, S.; Betts, R. Committed terrestrial ecosystem changes due to climate change. Nat. Geosci. 2009, 2, 484–487, doi:10.1038/ngeo555.
[29]  Lenton, T.M.; Held, H.; Kriegler, E.; Hall, J.W.; Lucht, W.; Rahmsdorf, S.; Schellnhuber, H.J. Tipping elements in the Earth’s climate system. Proc. Natl. Acad. Sci. USA 2008, 105, 1786–1793.
[30]  Moore, S.E.; Huntington, H.P. Arctic marine mammals and climate change: Impacts and resilience. Ecol. Appl. 2008, 18, S157–S165, doi:10.1890/06-0571.1.
[31]  Wassmann, P.; Duarte, C.M.; Agusti, S.; Sejr, M.K. Footprints of climate change in the Arctic marine ecosystem. Glob. Chang Biol. 2011, 17, 1235–1249, doi:10.1111/j.1365-2486.2010.02311.x.
[32]  Sahanatien, V.; Derocher, A.E. Monitoring sea ice habitat fragmentation for polar bear conservation. Anim. Cons. 2012, 15, 397–406.
[33]  Stirling, I.; Derocher, A.E. Effects of climate warming on polar bears: A review of the evidence. Glob. Chang Biol. 2012, 18, 2694–2706, doi:10.1111/j.1365-2486.2012.02753.x.
[34]  Hays, G.C.; Richardson, A.J.; Robinson, C. Climate change and marine plankton. Trends Ecol. Evol. 2005, 20, 337–344, doi:10.1016/j.tree.2005.03.004.
[35]  Garcon, J.S.; Grech, A.; Moloney, J.; Hamann, M. Relative Exposure Index: An important factor in sea turtle nesting distribution. Aquat. Cons. 2010, 20, 140–149, doi:10.1002/aqc.1057.
[36]  Gambaiani, D.D.; Mayol, M.P.; Isaac, S.J.; Simmonds, M.P. Potential impacts of climate change and greenhouse gas emissions on Mediterranean marine ecosystems and cetaceans. J. Mar. Biol. Assoc. UK 2009, 89, 179–201.
[37]  Glen, F.; Mrosovsky, N. Antigua revisited: The impact of climate change on sand and nest temperatures at a hawksbill turtle (Eretmochelys imbricata) nesting beach. Glob. Chang Biol. 2004, 10, 2036–2045, doi:10.1111/j.1529-8817.2003.00865.x.
[38]  Fish, M.R.; Cote, I.M.; Gill, J.A.; Jones, A.P.; Renshoff, S.; Watkinson, A.R. Predicting the impact of sea-level rise on Caribbean sea turtle nesting habitat. Cons. Biol. 2005, 19, 482–491, doi:10.1111/j.1523-1739.2005.00146.x.
[39]  Fish, M.R.; Cote, I.M.; Horrocks, J.A.; Mulligan, B.; Watkinson, A.R.; Jones, A.P. Construction setback regulations and sea level rise: Mitigating sea turtle nesting beach loss. Ocean Coast. Manag. 2008, 51, 330–341.
[40]  Pike, D.A.; Antworth, R.L.; Stiner, J.C. Earlier nesting contributes to shorter nesting seasons for the loggerhead turtle, Caretta caretta. J. Herpetol. 2006, 40, 91–94, doi:10.1670/100-05N.1.
[41]  Polovina, J.J.; Balazs, G.H.; Howell, E.A.; Parker, D.M.; Seki, M.P.; Dutton, P.H. Forage and migration habitat of loggerhead (Caretta caretta) and olive ridley (Lepidochelys olivacea) sea turtles in the central North Pacific Ocean. Fish. Ocean. 2004, 13, 36–51, doi:10.1046/j.1365-2419.2003.00270.x.
[42]  Morjan, C.L. How rapidly can maternal behavior affecting primary sex ratio evolve in a reptile with environmental sex determination? Am. Nat. 2003, 162, 205–219, doi:10.1086/376583.
[43]  Weber, S.B.; Broderick, A.C.; Groothuis, T.G.G.; Elleick, J.; Godley, B.J.; Blount, J.D. Fine-scale thermal adaptation in a green turtle nesting population. Proc. Roy. Soc. B 2011, 279, 1077–1084.
[44]  Baker, J.D.; Littnan, C.L.; Johnston, D.W. Potential effects of sea level rise on the terrestrial habitats of endangered and endemic megafauna in the Northwestern Hawaiian Islands. Endang. Species Res. 2006, 4, 1–10.
[45]  Gardner, S.C.; Chavez-Rosa, S. Changes in the relative abundance and distribution of gray whales (Eschrichtius robustus) in Magdalena Bay, Mexico during an El Ni?o event. Mar. Mammal Sci. 2000, 16, 728–738, doi:10.1111/j.1748-7692.2000.tb00968.x.
[46]  Chaloupka, M. Is climate change affecting the population dynamics of the endangered Pacific loggerhead sea turtle? J. Exp. Mar. Biol. Ecol. 2008, 356, 136–143, doi:10.1016/j.jembe.2007.12.009.
[47]  Hawkes, L.A.; Broderick, A.C.; Coyne, M.S.; Godfrey, M.H.; Godley, B.J. Only some like it hot—Quantifying the environmental niche of the loggerhead sea turtle. Divers. Distrib. 2007, 13, 447–457, doi:10.1111/j.1472-4642.2007.00354.x.
[48]  Foley, C.; Pettorelli, N.; Foley, L. Severe drought and calf survival. Biol. Lett. 2008, 4, 541–544, doi:10.1098/rsbl.2008.0370.
[49]  Shrader, A.M.; Pimm, S.L.; van Aarde, R.J. Elephant survival, rainfall and the confounding effects of water provision and fences. Biodivers. Conserv. 2010, 19, 2235–2245, doi:10.1007/s10531-010-9836-7.
[50]  Takemoto, H. Seasonal change in terrestriality of chimpanzees in relation to microclimate in the tropical forest. Am. J. Phys. Anthropol. 2004, 124, 81–92, doi:10.1002/ajpa.10342.
[51]  Remis, M.J.; Dierenfeld, E.S.; Mowry, C.B. Nutritional aspects of the diet of western lowland gorillas (Gorilla gorilla gorilla) at Bai Hokou, Central African Republic during fruit scarcity. Int. J. Primatol. 2001, 40, 106–136.
[52]  Yamagiwa, J.; Mwanza, N.; Yumoto, T.; Maruhashi, T. Seasonal changes in the composition of the diet of eastern lowland gorillas. Primates 1994, 35, 1–14.
[53]  Hannah, L. A Global Conservation System for Climate-Change Adaptation. Cons. Biol. 2009, 24, 70–77.
[54]  Stafford, K.M.; Citta, J.J.; Moore, S.E.; Daher, M.A.; George, J.E. Environmental correlates of blue and fin whale call detections in the North Pacific Ocean from 1997 to 2002. Mar. Ecol. Prog. Ser. 2009, 395, 37–53, doi:10.3354/meps08362.
[55]  Rugh, D.J.; Shelden, K.E.W.; Schulman-Janiger, A. Timing of the southbound migration of gray whales. J. Cetacean Res. Manag. 2001, 3, 31–39.
[56]  Yin, K.; Xie, Y.; Wu, N. Corridor connecting giant panda habitats from north to south in the Min Mountains, Sichuan, China. Integr. Zool. 2006, 1, 170–178, doi:10.1111/j.1749-4877.2006.00032.x.
[57]  Kawanishi, K.; Sunquist, M.E. Conservation status of tigers in a primary rainforest of Peninsular Malaysia. Biol. Conserv. 2004, 120, 329–344, doi:10.1016/j.biocon.2004.03.005.
[58]  Check, E. The tiger’s retreat. Nature 2006, 441, 927–930, doi:10.1038/441927a.
[59]  Linkie, M.; Chapron, G.; Martyr, D.J.; Holden, J.; Leader-Williams, N. Assessing the viability of tiger subpopulations in a fragmented landscape. J. Appl. Ecol. 2006, 43, 576–586, doi:10.1111/j.1365-2664.2006.01153.x.
[60]  Forrest, J.L.; Wikramanayake, E.; Shrestha, R.; Areendran, G.; Gyeltshen, K.; Maheshwari, A.; Mazumdar, S.; Naidoo, R.; Thapa, G.J.; Thapa, K. Conservation and climate change: Assessing the vulnerability of snow leopard habitat to treeline shift in the Himalaya. Biol. Conserv. 2012, 150, 129–135, doi:10.1016/j.biocon.2012.03.001.
[61]  Halpern, B.; Walbridge, S.; Selkoe, K.A.; Kappel, C.V.; Micheli, F.; D’Agrosa, C.; Bruno, J.F.; Casey, K.S.; Ebert, C.; Fox, H.E.; et al. A global map of human impact on marine ecosystems. Science 2008, 321, 1446–1450.
[62]  Smit, I.P.J.; Grant, C.C. Managing surface-water in a large semi-arid savanna park: Effects on grazer distribution patterns. J. Nat. Cons. 2009, 17, 61–71.
[63]  Owen-Smith, N. Ecological guidelines for waterpoints in extensive protected areas. S. Afr. J. Wildl. Res. 1996, 26, 107–112.
[64]  Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, B.F.N.; Ferreira de Siqueira, M.; Grainger, A.; Hannah, L.; et al. Extinction risk from climate change. Nature 2004, 427, 145–148, doi:10.1038/nature02121.
[65]  Campbell, A.; Kapos, V.; Scharlemann, J.P.W.; Bubb, P.; Chenery, A.; Coad, L.; Dickson, B.; Doswald, N.; Khan, M.S.I.; Kershaw, F.; et al. Review of the Literature on the Links between Biodiversity and Climate Change: Impacts, Adaptation and Mitigation; Secretariat of the Convention on Biological Diversity: Montreal, PQ, Canada, 2010; p. 124.
[66]  Hoffman, J. Cetaceans and Climate Change: Options for Adapting Conservation and Management; WWF: Gland, Switzerland, 2009.
[67]  Crossman, N.D.; Bryan, B.A.; Summers, D.M. Identifying priority areas for reducing species vulnerability to climate change. Divers. Distrib. 2012, 18, 60–72, doi:10.1111/j.1472-4642.2011.00851.x.
[68]  Williams, S.E.; Shoo, L.P.; Isaac, J.L.; Hoffmann, A.A.; Langham, G. Towards an integrated framework for assessing the vulnerability of species to climate change. PloS Biol. 2008, 6, 2621–2626.
[69]  NatureServe. NatureServe Guidelines for Using the NatureServe Climate Change Vulnerability Index; NatureServe: Arlington, VA, USA, 2010; p. 54.
[70]  Lawler, J.; Enquist, C.; Girvetz, E. Assessing the components of vulnerability. In A Framework for Categorizing the Relative Vulnerability of Threatened and Endangered Species to Climate Change; Glick, P., Stein, B.A., Edelson, N.A., Eds.; U.S. Environmental Protection Agency, Office of Research and Development: Washington, DC, USA, 2011; pp. 39–50.
[71]  Gardali, T.; Seavy, N.E.; DiGaudio, R.T.; Comrack, L.A. A Climate Change Vulnerability Assessment of California’s At-Risk Birds. PLoS One 2012, 7, e2950.
[72]  Swain, D.; Patnaik, S.K. Elephants of Orissa: Conservation issues and management options. Indian For. 2002, 128, 145–154.
[73]  Sukumar, R. A brief review of the status, distribution and biology of wild Asian elephants—Elephas maximus. Int. Zoo Yearb. 2006, 40, 1–8, doi:10.1111/j.1748-1090.2006.00001.x.
[74]  Hrabar, H.; du Toit, J.T. Dynamics of a protected black rhino (Diceros bicornis) population: Pilanesberg National Park, South Africa. Anim. Cons. 2005, 8, 259–267, doi:10.1017/S1367943005002234.
[75]  Fuentes, M.; Limpus, C.J.; Hamann, M. Vulnerability of sea turtle nesting grounds to climate change. Glob. Change Biol. 2011, 17, 140–153.
[76]  Naro-Maciel, N.; Mrosovsky, N.; Marcovaldi, M.A. Thermal profiles of sea turtle hatcheries and nesting areas at Praia do Forte. Braz. Chelonian Cons. Biol. 1999, 3, 407–413.
[77]  Fonseca, A.; Drews, C. Rising Sea Level due to Climate Change at Playa Grande, Las Baulas National Park, Costa Rica: Inundation Simulation based on a High Resolution, Digital Elevation Model and Implications for Park Management; Stereocarto Report, San José, WWF: Gland, Switzerland, 2009; p. 20.
[78]  Hamann, M.; Limpus, C.; Read, M. Vulnerability of marine reptiles to climate change in the Great Barrier Reef. In Climate Change and the Great Barrier Reef: A Vulnerability Assessment; Johnson, J., Marshal, P., Eds.; 2007; pp. 466–496.
[79]  Dutton, D.L.; Dutton, P.H.; Chaloupka, M.; Boulon, R.H. Increase of a Caribbean leatherback turtle Dermochelys coriacea nesting population linked to longterm nest protection. Biol. Cons. 2005, 126, 186–194, doi:10.1016/j.biocon.2005.05.013.
[80]  Thomé, J.C.A.; Baptistotte, C.; Moreira, L.M.; Scalfoni, J.T.; Almeida, A.P.; Rieth, D.B.; Barata, P.C.R. Nesting Biology and Conservation of the Leatherback Sea Turtle (Dermochelys coriacea) in the State of Espírito Santo, Brazil, 1988–1989 to 2003–2004. Chelonian Conserv. Biol. 2007, 6, 15–27, doi:10.2744/1071-8443(2007)6[15:NBACOT]2.0.CO;2.
[81]  Fish, M.R.; Drews, C. Adaptation to Climate Change: Options for Marine Turtles; WWF report, San José, WWF: Gland, Switzerland, 2009; p. 20.
[82]  Garrett, K.; Wallace, B.P.; Garner, J.; Paladino, F.V. Variations in leatherback turtle nest environments: Consequences for hatching success. Endang. Species Res. 2008, 11, 147–155.
[83]  Redfern, J.V.; Grant, C.C.; Gaylard, A.; Getz, W.M. Surface water availability and the management of herbivore distributions in an African savanna ecosystem. J. Arid Envir. 2005, 63, 406–424, doi:10.1016/j.jaridenv.2005.03.016.
[84]  Loarie, S.R.; van Aarde, R.J.; Pimm, S.L. Fences and artificial water affect African savannah elephant movement patterns. Biol. Cons. 2009, 142, 3086–3098, doi:10.1016/j.biocon.2009.08.008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133