全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biology  2013 

Root-Zone Glyphosate Exposure Adversely Affects Two Ditch Species

DOI: 10.3390/biology2041488

Keywords: agricultural runoff, glyphosate, drainage ditches, phytotoxicity, non-target species, wetland plants

Full-Text   Cite this paper   Add to My Lib

Abstract:

Glyphosate, one of the most applied herbicides globally, has been extensively studied for its effects on non-target organisms. In the field, following precipitation, glyphosate runs off into agricultural ditches where it infiltrates into the soil and thus may encounter the roots of vegetation. These edge-of-field ditches share many characteristics with wetlands, including the ability to reduce loads of anthropogenic chemicals through uptake, transformation, and retention. Different species within the ditches may have a differential sensitivity to exposure of the root zone to glyphosate, contributing to patterns of abundance of ruderal species. The present laboratory experiment investigated whether two species commonly found in agricultural ditches in southcentral United States were affected by root zone glyphosate in a dose-dependent manner, with the objective of identifying a sublethal concentration threshold. The root zone of individuals of Polygonum hydropiperoides and Panicum hemitomon were exposed to four concentrations of glyphosate. Leaf chlorophyll content was measured, and the ratio of aboveground biomass to belowground biomass and survival were quantified. The findings from this study showed that root zone glyphosate exposure negatively affected both species including dose-dependent reductions in chlorophyll content. P. hydropiperdoides showed the greatest negative response, with decreased belowground biomass allocation and total mortality at the highest concentrations tested.

References

[1]  Battaglin, W.A.; Kolpin, D.W.; Scribner, E.A.; Kuivila, K.M.; Sandstrom, M.W. Glyphosate, other herbicides, and transformation products in Midwestern streams, 2002. J. Am. Water Resour. Assoc. 2005, 41, 323–332, doi:10.1111/j.1752-1688.2005.tb03738.x.
[2]  Pollegioni, L.; Schonbruun, E.; Siehl, D. Molecular basis of glyphosate resistance—Different approaches through protein engineering. FEBS J. 2011, 278, 2753–2766, doi:10.1111/j.1742-4658.2011.08214.x.
[3]  Grube, A.; Donaldson, D.; Kiely, T.; Wu, L. Pesticides Industry Sales and Usage 2006 and 2007 Market Estimates; US Environmental Protection Agency, Office of Chemical Safety and Pollution Prevention: Washington, DC, USA, 2011.
[4]  De Snoo, G.R.; van der Poll, R.J. Effect of herbicide drift on adjacent boundary vegetation. Agric. Ecosyst. Environ. 1999, 73, 1–6, doi:10.1016/S0167-8809(99)00008-0.
[5]  White, A.L.; Boutin, C. Herbicidal effects on nontarget vegetation: Investigating the limitations of current pesticide registration guidelines. Environ. Toxicol. Chem. 2007, 26, 2634–2643, doi:10.1897/06-553.1.
[6]  Dalton, R.L.; Boutin, C. Comparison of the effects of glyphosate and atrazine herbicides on nontarget plants grown singly and in microcosms. Environ. Toxicol. Chem. 2010, 29, 2304–2315, doi:10.1002/etc.277.
[7]  Vereecken, H. Mobility and leaching of glyphosate: A review. Pest Manag. Sci. 2005, 61, 1139–1151, doi:10.1002/ps.1122.
[8]  Weaver, L.M.; Herrmann, K.M. Dynamics of the shikimate pathway in plants. Trends Plant Sci. 1997, 2, 346–351, doi:10.1016/S1360-1385(97)84622-5.
[9]  Gruys, K.J.; Sikorski, J.A. Inhibitors of tryptophan, phenylalanine, and tyrosine biosynthesis as herbicides. In Plant Amino Acids: Biochemistry and Biotechnology; Singh, K., Ed.; Marcel Dekker: New York, NY, USA, 1999; pp. 357–384.
[10]  Hoagland, R.E.; Duke, S.O. Biochemical effects of glyphosate [N-(Phosphonomethyl)glycine]. In Biochemical Responses Induced by Herbicides; Moreland, D.E., St. John, J.B., Hess, F.D., Eds.; American Chemical Society: Washington, DC, USA, 1982; pp. 175–205.
[11]  Giesy, J.P.; Dobson, S.; Solomon, K.R. Ecotoxicological risk assessment for Roundup? herbicide. Rev. Environ. Contam. Toxicol. 2000, 167, 35–120.
[12]  Pierce, S.C.; Pezeshki, S.R. Vegetation in agricultural ditches: Limitations to establishment, productivity and ecosystem functioning. In Agricultural Drainage Ditches: Mitigation Wetlands for the 21st Century; Moore, M.T., Kr?ger, R., Eds.; Research Signpost: Kerala, India, 2010; pp. 75–106.
[13]  USEPA Pesticides: Environmental Effects. Available online: http://www.epa.gov/oppefed1/ecorisk_ders/toera_analysis_exp.htm/ (accessed on 4 January 2012).
[14]  Bouldin, J.L.; Farris, J.L.; Moore, M.T.; Cooper, C.M. Vegetative and structural characteristics of agricultural drainages in the Mississippi Delta landscape. Environ. Pollut. 2004, 132, 403–411, doi:10.1016/j.envpol.2004.05.026.
[15]  USDA NRCS PLANTS Database. Available online: http://plants.usda.gov/ (accessed on 4 January 2012).
[16]  Moore, M.T.; Kr?ger, R. Evaluating plant species-specific contributions to nutrient mitigation in drainage ditch mesocosms. Water Air Soil Pollut. 2011, 217, 445–454, doi:10.1007/s11270-010-0599-2.
[17]  Borggaard, O.K.; Gimsing, A.L. Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: A review. Pest Manag. Sci. 2008, 64, 441–456, doi:10.1002/ps.1512.
[18]  SPSS Inc. SPSS 12.0 for Windows, Release 12.0.1; SPSS Inc.: Chicago, IL, USA, 2004.
[19]  Alister, C.; Kogan, M.; Pino, I. Differential phytotoxicity of glyphosate in maize seedlings following applications to roots or shoot. Weed Res. 2005, 45, 27–32, doi:10.1111/j.1365-3180.2004.00424.x.
[20]  Beisel, K.G.; Jahnke, S.; Hofmann, D.; K?ppchen, S.; Schurr, U.; Matsubara, S. Continuous turnover of carotenes and chlorophyll a in mature leaves of Arabidopsis revealed by 14CO2 pulse-chase labeling[OA]. Plant Physiol. 2010, 152, 2188–2199, doi:10.1104/pp.109.151647.
[21]  Rankins, A.; Shaw, D.; Douglas, J. Response of perennial grasses potentially used as filter strips to selected postemergence herbicides. Weed Technol. 2005, 19, 73–77, doi:10.1614/WT-03-244R.
[22]  Stehle, S.; Elsaesser, D.; Gregoire, C.; Imfeld, G.; Niehaus, E.; Passeport, E.; Payraudeau, S.; Shafer, R.B.; Tournebize, J.; Shulz, R. Pesticide risk mitigation by vegetated treatment systems: A meta-analysis. J. Environ. Qual. 2011, 40, 1068–1080, doi:10.2134/jeq2010.0510.
[23]  Syversen, N.; Bechmann, M. Vegetative buffer zones as pesticide filters for simulated surface runoff. Ecol. Eng. 2004, 22, 175–184, doi:10.1016/j.ecoleng.2004.05.002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133