全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biology  2013 

Next Generation Characterisation of Cereal Genomes for Marker Discovery

DOI: 10.3390/biology2041357

Keywords: sequencing, single nucleotide polymorphisms, genotyping by sequencing, polyploidy, markers, cereals

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cereal crops form the bulk of the world’s food sources, and thus their importance cannot be understated. Crop breeding programs increasingly rely on high-resolution molecular genetic markers to accelerate the breeding process. The development of these markers is hampered by the complexity of some of the major cereal crop genomes, as well as the time and cost required. In this review, we address current and future methods available for the characterisation of cereal genomes, with an emphasis on faster and more cost effective approaches for genome sequencing and the development of markers for trait association and marker assisted selection (MAS) in crop breeding programs.

References

[1]  Meyers, L.A.; Levin, D.A. On the abundance of polyploids in flowering plants. Evolution 2006, 60, 1198–1206.
[2]  Leitch, A.R.; Leitch, I.J. Genomic plasticity and the diversity of polyploid plants. Science 2008, 320, 481–483, doi:10.1126/science.1153585.
[3]  Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 2011, 27, 2987–2993, doi:10.1093/bioinformatics/btr509.
[4]  Kim, S.Y.; Lohmueller, K.E.; Albrechtsen, A.; Li, Y.; Korneliussen, T.; Tian, G.; Grarup, N.; Jiang, T.; Andersen, G.; Witte, D.; et al. Estimation of allele frequency and association mapping using next-generation sequencing data. BMC Bioinformatics 2011, 12, 231, doi:10.1186/1471-2105-12-231.
[5]  Sanger, F.; Nicklen, S.; Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5463–5467, doi:10.1073/pnas.74.12.5463.
[6]  Sanger, F. The Croonian Lecture, 1975. Nucleotide sequences in DNA. Proc. R. Soc. Lond. B Biol. Sci. 1975, 191, 317–333, doi:10.1098/rspb.1975.0131.
[7]  Zimmermann, J.; Voss, H.; Schwager, C.; Stegemann, J.; Ansorge, W. Automated Sanger dideoxy sequencing reaction protocol. FEBS Lett. 1988, 233, 432–436, doi:10.1016/0014-5793(88)80477-0.
[8]  Shendure, J.; Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 2008, 26, 1135–1145.
[9]  Margulies, M.; Egholm, M.; Altman, W.E.; Attiya, S.; Bader, J.S.; Bemben, L.A.; Berka, J.; Braverman, M.S.; Chen, Y.-J.; Chen, Z.; Dewell, S.B.; et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005, 437, 376–380.
[10]  Bentley, D.R.; Balasubramanian, S.; Swerdlow, H.P.; Smith, G.P.; Milton, J.; Brown, C.G.; Hall, K.P.; Evers, D.J.; Barnes, C.L.; Bignell, H.R.; et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 2008, 456, 53–59, doi:10.1038/nature07517.
[11]  Edwards, D.; Wilcox, S.; Barrero, R.A.; Fleury, D.; Cavanagh, C.R.; Forrest, K.L.; Hayden, M.J.; Moolhuijzen, P.; Keeble-Gagnère, G.; et al. Bread matters: A national initiative to profile the genetic diversity of Australian wheat. Plant Biotechnol. J. 2012, 10, 703–708, doi:10.1111/j.1467-7652.2012.00717.x.
[12]  Shulaev, V.; Sargent, D.J.; Crowhurst, R.N.; Mockler, T.C.; Folkerts, O.; Delcher, A.L.; Jaiswal, P.; Mockaitis, K.; Liston, A.; Mane, S.P.; et al. The genome of woodland strawberry (Fragaria vesca). Nat. Genet. 2011, 43, 109–116, doi:10.1038/ng.740.
[13]  Dong, C.-H.; Li, C.; Yan, X.-H.; Huang, S.-M.; Huang, J.-Y.; Wang, L.-J.; Guo, R.-X.; Lu, G.-Y.; Zhang, X.-K.; Fang, X.-P.; et al. Gene expression profiling of Sinapis alba leaves under drought stress and rewatering growth conditions with Illumina deep sequencing. Mol. Biol. Rep. 2012, 39, 5851–5857, doi:10.1007/s11033-011-1395-9.
[14]  Williams-Carrier, R.; Stiffler, N.; Belcher, S.; Kroeger, T.; Stern, D.B.; Monde, R.-A.; Coalter, R.; Barkan, A. Use of Illumina sequencing to identify transposon insertions underlying mutant phenotypes in high-copy mutator lines of maize. Plant J. 2010, 63, 167–177.
[15]  Imelfort, M.; Edwards, D. De novo sequencing of plant genomes using second-generation technologies. Brief. Bioinformatics 2009, 10, 609–618.
[16]  Edwards, D.; Batley, J.; Snowdon, R.J. Accessing complex crop genomes with next-generation sequencing. Theor. Appl. Genet. 2013, 126, 1–11, doi:10.1007/s00122-012-1964-x.
[17]  Rothberg, J.M.; Hinz, W.; Rearick, T.M.; Schultz, J.; Mileski, W.; Davey, M.; Leamon, J.H.; Johnson, K.; Milgrew, M.J.; Edwards, M.; et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature 2011, 475, 348–352, doi:10.1038/nature10242.
[18]  Eid, J.; Fehr, A.; Gray, J.; Luong, K.; Lyle, J.; Otto, G.; Peluso, P.; Rank, D.; Baybayan, P.; Bettman, B.; Bibillo, A.; et al. Real-time DNA sequencing from single polymerase molecules. Science 2009, 323, 133–138, doi:10.1126/science.1162986.
[19]  Mason, C.E.; Elemento, O. Faster sequencers, larger datasets, new challenges. Genome Biol. 2012, 13, 314, doi:10.1186/gb-2012-13-3-314.
[20]  Au, K.F.; Underwood, J.G.; Lee, L.; Wong, W.H. Improving PacBio long read accuracy by short read alignment. PLoS ONE 2012, 7, e46679.
[21]  Kasianowicz, J.J.; Brandin, E.; Branton, D.; Deamer, D.W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 13770–13773.
[22]  Stoddart, D.; Heron, A.J.; Mikhailova, E.; Maglia, G.; Bayley, H. Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 7702–7707.
[23]  International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature 2005, 436, 793–800, doi:10.1038/nature03895.
[24]  Flavell, R.B.; Rimpau, J.R.; Smith, D.B. Repeated sequence DNA relationships in four cereal genomes. Chromosoma 1977, 63, 205–222, doi:10.1007/BF00327450.
[25]  Brenchley, R.; Spannagl, M.; Pfeifer, M.; Barker, G.L.A.; D'Amore, R.; Allen, A.M.; McKenzie, N.; Kramer, M.; Kerhornou, A.; Bolser, D.; et al. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 2012, 491, 705–710, doi:10.1038/nature11650.
[26]  SanMiguel, P.; Gaut, B.S.; Tikhonov, A.; Nakajima, Y.; Bennetzen, J.L. The paleontology of intergene retrotransposons of maize. Nat. Genet. 1998, 20, 43–45, doi:10.1038/1695.
[27]  Schnable, P.S.; Ware, D.; Fulton, R.S.; Stein, J.C.; Wei, F.; Pasternak, S.; Liang, C.; Zhang, J.; Fulton, L.; Graves, T.A.; et al. The B73 maize genome: complexity, diversity, and dynamics. Science 2009, 326, 1112–1115, doi:10.1126/science.1178534.
[28]  Paterson, A.H.; Bowers, J.E.; Bruggmann, R.; Dubchak, I.; Grimwood, J.; Gundlach, H.; Haberer, G.; Hellsten, U.; Mitros, T.; Poliakov, A.; et al. The Sorghum bicolor genome and the diversification of grasses. Nature 2009, 457, 551–556, doi:10.1038/nature07723.
[29]  Dole?el, J.; Kubaláková, M.; Paux, E.; Bartos, J.; Feuillet, C. Chromosome-based genomics in the cereals. Chromosome Res. 2007, 15, 51–66, doi:10.1007/s10577-006-1106-x.
[30]  Duran, C.; Edwards, D.; Batley, J. Genetic Maps and the Use of Synteny. In Plant Genomics; Gustafson, J.P., Langridge, P., Somers, D.J., Eds.; Humana Press: New York, NY, USA, 2009; Volume 513, pp. 41–55.
[31]  Dole?el, J.; Kubaláková, M.; Bartos, J.; Macas, J. Flow cytogenetics and plant genome mapping. Chromosome Res. 2004, 12, 77–91, doi:10.1023/B:CHRO.0000009293.15189.e5.
[32]  Berkman, P.J.; Visendi, P.; Lee, H.C.; Stiller, J.; Manoli, S.; Lorenc, M.T.; Lai, K.; Batley, J.; Fleury, D.; Simková, H.; et al. Dispersion and domestication shaped the genome of bread wheat. Plant Biotechnol. J. 2013, 11, 564–571, doi:10.1111/pbi.12044.
[33]  Berkman, P.J.; Skarshewski, A.; Manoli, S.; Lorenc, M.T.; Stiller, J.; Smits, L.; Lai, K.; Campbell, E.; Kubaláková, M.; Simková, H.; et al. Sequencing wheat chromosome arm 7BS delimits the 7BS/4AL translocation and reveals homoeologous gene conservation. Theor. Appl. Genet. 2011, 124, 423–432.
[34]  Berkman, P.J.; Skarshewski, A.; Lorenc, M.T.; Lai, K.; Duran, C.; Ling, E.Y.S.; Stiller, J.; Smits, L.; Imelfort, M.; Manoli, S.; et al. Sequencing and assembly of low copy and genic regions of isolated Triticum aestivum chromosome arm 7DS. Plant Biotechnol. J. 2011, 9, 768–775, doi:10.1111/j.1467-7652.2010.00587.x.
[35]  Hernandez, P.; Martis, M.; Dorado, G.; Pfeifer, M.; Gálvez, S.; Schaaf, S.; Jouve, N.; Simková, H.; Valárik, M.; Dole?el, J.; et al. Next-generation sequencing and syntenic integration of flow-sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. Plant J. 2012, 69, 377–386, doi:10.1111/j.1365-313X.2011.04808.x.
[36]  Nie, X.; Li, B.; Wang, L.; Liu, P.; Biradar, S.S.; Li, T.; Dole?el, J.; Edwards, D.; Luo, M.; Weining, S. Development of chromosome-arm-specific microsatellite markers in Triticum aestivum (Poaceae) using NGS technology. Am. J. Bot. 2012, 99, e369–e371, doi:10.3732/ajb.1200077.
[37]  Barry, G.F. The use of the Monsanto draft rice genome sequence in research. Plant Physiol. 2001, 125, 1164–1165, doi:10.1104/pp.125.3.1164.
[38]  Goff, S.A.; Ricke, D.; Lan, T.-H.; Presting, G.; Wang, R.; Dunn, M.; Glazebrook, J.; Sessions, A.; Oeller, P.; Varma, H.; et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Sci. New Ser. 2002, 296, 92–100.
[39]  Mayer, K.F.X.; Waugh, R.; Brown, J.W.S.; Schulman, A.; Langridge, P.; Platzer, M.; Fincher, G.B.; Muehlbauer, G.J.; Sato, K.; Close, T.J.; et al. International Barley Genome Sequencing Consortium, A physical; genetic and functional sequence assembly of the barley genome. Nature 2012, 491, 711–716.
[40]  Dohm, J.C.; Lottaz, C.; Borodina, T.; Himmelbauer, H. Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res. 2008, 36, e105, doi:10.1093/nar/gkn425.
[41]  Salzberg, S.L.; Phillippy, A.M.; Zimin, A.; Puiu, D.; Magoc, T.; Koren, S.; Treangen, T.J.; Schatz, M.C.; Delcher, A.L.; Roberts, M.; et al. A critical evaluation of genome assemblies and assembly algorithms. Genome Res. 2012, 22, 557–567, doi:10.1101/gr.131383.111.
[42]  Gabaldón, T.; Koonin, E.V. Functional and evolutionary implications of gene orthology. Nat. Rev. Genet. 2013, 14, 360–366, doi:10.1038/nrg3456.
[43]  Carter, A.H.; Garland-Campbell, K.; Morris, C.F.; Kidwell, K.K. Chromosomes 3B and 4D are associated with several milling and baking quality traits in a soft white spring wheat (Triticum aestivum L.) population. Theor. Appl. Genet. 2012, 124, 1079–1096.
[44]  Vitulo, N.; Albiero, A.; Forcato, C.; Campagna, D.; Dal Pero, F.; Bagnaresi, P.; Colaiacovo, M.; Faccioli, P.; Lamontanara, A.; Simková, H.; et al. First survey of the wheat chromosome 5A composition through a next generation sequencing approach. PLoS One 2011, 6, e26421, doi:10.1371/journal.pone.0026421.
[45]  Rustenholz, C.; Choulet, F.; Laugier, C.; Safár, J.; Simková, H.; Dole?el, J.; Magni, F.; Scalabrin, S.; Cattonaro, F.; Vautrin, S.; et al. A 3,000-loci transcription map of chromosome 3B unravels the structural and functional features of gene islands in hexaploid wheat. Plant Physiol. 2011, 157, 1596–1608, doi:10.1104/pp.111.183921.
[46]  Cseh, A.; Kruppa, K.; Molnár, I.; Rakszegi, M.; Dole?el, J.; Molnár-Láng, M. Characterization of a new 4BS.7HL wheat-barley translocation line using GISH, FISH, and SSR markers and its effect on the β-glucan content of wheat. Genome 2011, 54, 795–804, doi:10.1139/g11-044.
[47]  Yoshida, T.; Nishida, H.; Zhu, J.; Nitcher, R.; Distelfeld, A.; Akashi, Y.; Kato, K.; Dubcovsky, J. Vrn-D4 is a vernalization gene located on the centromeric region of chromosome 5D in hexaploid wheat. Theor. Appl. Genet. 2010, 120, 543–552, doi:10.1007/s00122-009-1174-3.
[48]  Breen, J.; Wicker, T.; Kong, X.; Zhang, J.; Ma, W.; Paux, E.; Feuillet, C.; Appels, R.; Bellgard, M. A highly conserved gene island of three genes on chromosome 3B of hexaploid wheat: diverse gene function and genomic structure maintained in a tightly linked block. BMC Plant Biol. 2010, 10, 98, doi:10.1186/1471-2229-10-98.
[49]  Saintenac, C.; Falque, M.; Martin, O.C.; Paux, E.; Feuillet, C.; Sourdille, P. Detailed recombination studies along chromosome 3B provide new insights on crossover distribution in wheat (Triticum aestivum L.). Genetics 2009, 181, 393–403.
[50]  Alfares, W.; Bouguennec, A.; Balfourier, F.; Gay, G.; Bergès, H.; Vautrin, S.; Sourdille, P.; Bernard, M.; Feuillet, C. Fine mapping and marker development for the crossability gene SKr on chromosome 5BS of hexaploid wheat (Triticum aestivum L.). Genetics 2009, 183, 469–481, doi:10.1534/genetics.109.107706.
[51]  Ren, X.-B.; Lan, X.-J.; Liu, D.-C.; Wang, J.-L.; Zheng, Y.-L. Mapping QTLs for pre-harvest sprouting tolerance on chromosome 2D in a synthetic hexaploid wheat x common wheat cross. J. Appl. Genet. 2008, 49, 333–341, doi:10.1007/BF03195631.
[52]  Paux, E.; Sourdille, P.; Salse, J.; Saintenac, C.; Choulet, F.; Leroy, P.; Korol, A.; Michalak, M.; Kianian, S.; Spielmeyer, W.; et al. A physical map of the 1-gigabase bread wheat chromosome 3B. Science 2008, 322, 101–104, doi:10.1126/science.1161847.
[53]  Maccaferri, M.; Mantovani, P.; Tuberosa, R.; Deambrogio, E.; Giuliani, S.; Demontis, A.; Massi, A.; Sanguineti, M.C. A major QTL for durable leaf rust resistance widely exploited in durum wheat breeding programs maps on the distal region of chromosome arm 7BL. Theor. Appl. Genet. 2008, 117, 1225–1240, doi:10.1007/s00122-008-0857-5.
[54]  International Brachypodium Initiative. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 2010, 463, 763–768, doi:10.1038/nature08747.
[55]  Wicker, T.; Mayer, K.F.X.; Gundlach, H.; Martis, M.; Steuernagel, B.; Scholz, U.; Simková, H.; Kubaláková, M.; Choulet, F.; Taudien, S.; et al. Frequent gene movement and pseudogene evolution is common to the large and complex genomes of wheat, barley, and their relatives. Plant Cell 2011, 23, 1706–1718, doi:10.1105/tpc.111.086629.
[56]  Bossolini, E.; Wicker, T.; Knobel, P.A.; Keller, B. Comparison of orthologous loci from small grass genomes Brachypodium and rice: Implications for wheat genomics and grass genome annotation. Plant J. 2007, 49, 704–717, doi:10.1111/j.1365-313X.2006.02991.x.
[57]  Botstein, D.; White, R.L.; Skolnick, M.; Davis, R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 1980, 32, 314–331.
[58]  Asakura, N.; Mori, N.; Nakamura, C.; Ohtsuka, I. Genotyping of the Q locus in wheat by a simple PCR-RFLP method. Genes Genet. Syst. 2009, 84, 233–237, doi:10.1266/ggs.84.233.
[59]  Han, F.P.; Fedak, G.; Benabdelmouna, A.; Armstrong, K.; Ouellet, T. Characterization of six wheat x Thinopyrum intermedium derivatives by GISH, RFLP, and multicolor GISH. Genome 2003, 46, 490–495, doi:10.1139/g03-032.
[60]  Ma, X.F.; Ross, K.; Gustafson, J.P. Physical mapping of restriction fragment length polymorphism (RFLP) markers in homoeologous groups 1 and 3 chromosomes of wheat by in situ hybridization. Genome 2001, 44, 401–412, doi:10.1139/g01-001.
[61]  Sim, S.; Chang, T.; Curley, J.; Warnke, S.E.; Barker, R.E.; Jung, G. Chromosomal rearrangements differentiating the ryegrass genome from the Triticeae, oat, and rice genomes using common heterologous RFLP probes. Theor. Appl. Genet. 2005, 110, 1011–1019, doi:10.1007/s00122-004-1916-1.
[62]  Singh, R.K.; Mishra, R.P.N.; Jaiswal, H.K.; Kumar, V.; Pandey, S.P.; Rao, S.B.; Annapurna, K. Isolation and identification of natural endophytic rhizobia from rice (Oryza sativa L.) through rDNA PCR-RFLP and sequence analysis. Curr. Microbiol. 52, 2006, 345–349.
[63]  Huang, W.; Wang, L.; Yi, P.; Tan, X.-L.; Zhang, X.-M.; Zhang, Z.-J.; Li, Y.-S.; Zhu, Y.-G. RFLP analysis for mitochondrial genome of CMS-rice. Yi Chuan Xue Bao 2006, 33, 330–338.
[64]  Xu, X.F.; Mei, H.W.; Luo, L.J.; Cheng, X.N.; Li, Z.K. RFLP-facilitated investigation of the quantitative resistance of rice to brown planthopper ( Nilaparvata lugens). Theor. Appl. Genet. 2002, 104, 248–253, doi:10.1007/s00122-001-0777-0.
[65]  Lu, B.-R.; Zheng, K.L.; Qian, H.R.; Zhuang, J.Y. Genetic differentiation of wild relatives of rice as assessed by RFLP analysis. Theor. Appl. Genet. 2002, 106, 101–106.
[66]  Maestri, E.; Malcevschi, A.; Massari, A.; Marmiroli, N. Genomic analysis of cultivated barley (Hordeum vulgare) using sequence-tagged molecular markers. Estimates of divergence based on RFLP and PCR markers derived from stress-responsive genes, and simple-sequence repeats (SSRs). Mol. Genet. Genomics 2002, 267, 186–201, doi:10.1007/s00438-002-0650-0.
[67]  Künzel, G.; Waugh, R. Integration of microsatellite markers into the translocation-based physical RFLP map of barley chromosome 3H. Theor. Appl. Genet. 2002, 105, 660–665, doi:10.1007/s00122-002-0913-5.
[68]  Saeki, K.; Miyazaki, C.; Hirota, N.; Saito, A.; Ito, K.; Konishi, T. RFLP mapping of BaYMV resistance gene rym3 in barley (Hordeum vulgare). Theor. Appl. Genet. 1999, 99, 727–732, doi:10.1007/s001220051290.
[69]  Michalek, W.; Künzel, G.; Graner, A. Sequence analysis and gene identification in a set of mapped RFLP markers in barley (Hordeum vulgare). Genome 1999, 42, 849–853.
[70]  Jordan, D.R.; Tao, Y.; Godwin, I.D.; Henzell, R.G.; Cooper, M.; McIntyre, C.L. Prediction of hybrid performance in grain sorghum using RFLP markers. Theor. Appl. Genet. 2003, 106, 559–567.
[71]  Schloss, J.; Mitchell, E.; White, M.; Kukatla, R.; Bowers, E.; Paterson, H.; Kresovich, S. Characterization of RFLP probe sequences for gene discovery and SSR development in Sorghum bicolor (L.) Moench. Theor. Appl. Genet. 2002, 105, 912–920, doi:10.1007/s00122-002-0991-4.
[72]  Haussmann, G.; Hess, E.; Seetharama, N.; Welz, G.; Geiger, H. Construction of a combined sorghum linkage map from two recombinant inbred populations using AFLP, SSR, RFLP, and RAPD markers, and comparison with other sorghum maps. Theor. Appl. Genet. 2002, 105, 629–637, doi:10.1007/s00122-002-0900-x.
[73]  Subudhi, P.K.; Nguyen, H.T. Linkage group alignment of sorghum RFLP maps using a RIL mapping population. Genome 2000, 43, 240–249, doi:10.1139/g99-112.
[74]  Gauthier, P.; Gouesnard, B.; Dallard, J.; Redaelli, R.; Rebourg, C.; Charcosset, A.; Boyat, A. RFLP diversity and relationships among traditional European maize populations. Theor. Appl. Genet. 2002, 105, 91–99, doi:10.1007/s00122-002-0903-7.
[75]  Dubreuil, P.; Charcosset, A. Relationships among maize inbred lines and populations from European and North-American origins as estimated using RFLP markers. Theor. Appl. Genet. 1999, 99, 473–480, doi:10.1007/s001220051259.
[76]  Lin, B.Y.; Peng, S.F.; Chen, Y.J.; Chen, H.S.; Kao, C.F. Physical mapping of RFLP markers on four chromosome arms in maize using terminal deficiencies. Mol. Gen. Genet. 1997, 256, 509–516, doi:10.1007/s004380050595.
[77]  Vos, P.; Hogers, R.; Bleeker, M.; Reijans, M.; van de Lee, T.; Hornes, M.; Frijters, A.; Pot, J.; Peleman, J.; Kuiper, M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995, 23, 4407–4414, doi:10.1093/nar/23.21.4407.
[78]  Tautz, D.; Schl?tterer, C. Simple sequences. Curr. Opin. Genet. Dev. , 1994.
[79]  Batley, J.; Jewell, E.; Edwards, D. Automated Discovery of Single Nucleotide Polymorphism and Simple Sequence Repeat Molecular Genetic Markers. In Methods in Molecular Biology; Edwards, D., Ed.; Humana Press: New York, NY, USA, 2007; Volume 406, pp. 473–494.
[80]  Batley, J.; Edwards, D. Mining for Single Nucleotide Polymorphism (SNP) and Simple Sequence Repeat (SSR) Molecular Genetic Markers. In Bioinformatics for DNA Sequence Analysis; Posada, D., Ed.; Humana Press: New York, NY, USA, 2009; pp. 303–322.
[81]  Duran, C.; Edwards, D.; Batley, J. Molecular marker discovery and genetic map visualisation. Bioinformatics 2009, 4, 165–189, doi:10.1007/978-0-387-92738-1_8.
[82]  Hartings, H.; Berardo, N.; Mazzinelli, G.F.; Valoti, P.; Verderio, A.; Motto, M. Assessment of genetic diversity and relationships among maize (Zea mays L.) Italian landraces by morphological traits and AFLP profiling. Theor. Appl. Genet. 2008, 117, 831–842, doi:10.1007/s00122-008-0823-2.
[83]  Zhang, Z.F.; Wang, Y.; Zheng, Y.L. AFLP and PCR-based markers linked to Rf3, a fertility restorer gene for S cytoplasmic male sterility in maize. Mol. Genet. Genomics 2006, 276, 162–169, doi:10.1007/s00438-006-0131-y.
[84]  Zhang, F.; Wan, X.-Q.; Pan, G.-T. QTL mapping of Fusarium moniliforme ear rot resistance in maize. 1. Map construction with microsatellite and AFLP markers. J. Appl. Genet. 2006, 47, 9–15, doi:10.1007/BF03194593.
[85]  Schrag, T.A.; Melchinger, A.E.; S?rensen, A.P.; Frisch, M. Prediction of single-cross hybrid performance for grain yield and grain dry matter content in maize using AFLP markers associated with QTL. Theor. Appl. Genet. 2006, 113, 1037–1047, doi:10.1007/s00122-006-0363-6.
[86]  Peng, S.-F.; Lin, Y.-P.; Lin, B.-Y. Characterization of AFLP sequences from regions of maize B chromosome defined by 12 B-10L translocations. Genetics 2005, 169, 375–388, doi:10.1534/genetics.104.032417.
[87]  Miranda Oliveira, K.; Rios Laborda, P.; Augusto F Garcia, A.; Zagatto Paterniani, M.E. A.G.; de Souza, A.P. Evaluating genetic relationships between tropical maize inbred lines by means of AFLP profiling. Hereditas 2004, 140, 24–33, doi:10.1111/j.1601-5223.2004.01702.x.
[88]  Cai, H.-W.; Gao, Z.-S.; Yuyama, N.; Ogawa, N. Identification of AFLP markers closely linked to the rhm gene for resistance to southern corn leaf blight in maize by using bulked segregant analysis. Mol. Genet. Genomics 2003, 269, 299–303.
[89]  Agrama, H.A.; Houssin, S.F.; Tarek, M.A. Cloning of AFLP markers linked to resistance to Peronosclerospora sorghi in maize. Mol. Genet. Genomics 2002, 267, 814–819, doi:10.1007/s00438-002-0713-2.
[90]  Legesse, B.W.; Myburg, A.A.; Pixley, K.V.; Botha, A.M. Genetic diversity of African maize inbred lines revealed by SSR markers. Hereditas 2007, 144, 10–17, doi:10.1111/j.2006.0018-0661.01921.x.
[91]  Wen, L.; Tang, H.V.; Chen, W.; Chang, R.; Pring, D.R.; Klein, P.E.; Childs, K.L.; Klein, R.R. Development and mapping of AFLP markers linked to the sorghum fertility restorer gene rf4. Theor. Appl. Genet. 2002, 104, 577–585, doi:10.1007/s00122-001-0774-3.
[92]  Klein, P.E.; Klein, R.R.; Cartinhour, S.W.; Ulanch, P.E.; Dong, J.; Obert, J.A.; Morishige, D.T.; Schlueter, S.D.; Childs, K.L.; Ale, M.; et al. A high-throughput AFLP-based method for constructing integrated genetic and physical maps: progress toward a sorghum genome map. Genome Res. 2000, 10, 789–807, doi:10.1101/gr.10.6.789.
[93]  Zhang, D.; Ding, Y. Genetic diversity of wild close relatives of barley in Tibet of China revealed by AFLP. Yi Chuan 2007, 29, 725–730, doi:10.1360/yc-007-0725.
[94]  Takahashi, H.; Akagi, H.; Mori, K.; Sato, K.; Takeda, K. Genomic distribution of MITEs in barley determined by MITE-AFLP mapping. Genome 2006, 49, 1616–1620, doi:10.1139/g06-115.
[95]  Komatsuda, T.; Maxim, P.; Senthil, N.; Mano, Y. High-density AFLP map of nonbrittle rachis 1 (btr1) and 2 (btr2) genes in barley (Hordeum vulgare L.). Theor. Appl. Genet. 2004, 109, 986–995, doi:10.1007/s00122-004-1710-0.
[96]  He, C.; Sayed-Tabatabaei, B.E.; Komatsuda, T. AFLP targeting of the 1-cM region conferring the vrs1 gene for six-rowed spike in barley, Hordeum vulgare L. Genome 2004, 47, 1122–1129, doi:10.1139/g04-073.
[97]  Turpeinen, T.; Vanhala, T.; Nevo, E.; Nissil?, E. AFLP genetic polymorphism in wild barley (Hordeum spontaneum) populations in Israel. Theor. Appl. Genet. 2003, 106, 1333–1339.
[98]  Wang, Y.; Zhu, J.; Zhao, H.M.; Lei, D.H.; Wang, Z.Y.; Peng, Y.K.; Xie, C.J.; Sun, Q.X.; Liu, Z.Y.; Yang, Z.M. Screening and identification of the AFLP markers linked to a new powdery mildew resistance gene in wheat cultivar Brock. Fen Zi Xi Bao Sheng Wu Xue Bao 2008, 41, 294–300.
[99]  Ozbek, O.; Millet, E.; Anikster, Y.; Arslan, O.; Feldman, M. Spatio-temporal genetic variation in populations of wild emmer wheat, Triticum turgidum ssp. dicoccoides, as revealed by AFLP analysis. Theor. Appl. Genet. 2007, 115, 19–26, doi:10.1007/s00122-007-0536-y.
[100]  Xu, D.H.; Ban, T. Conversion of AFLP markers associated with FHB resistance in wheat into STS markers with an extension-AFLP method. Genome 2004, 47, 660–665, doi:10.1139/g04-022.
[101]  Tyrka, M. Fingerprinting of common wheat cultivars with an Alw44I-based AFLP method. J. Appl. Genet. 2004, 45, 405–410.
[102]  Zhou, W.; Kolb, F.L.; Bai, G.; Shaner, G.; Domier, L.L. Genetic analysis of scab resistance QTL in wheat with microsatellite and AFLP markers. Genome 2002, 45, 719–727, doi:10.1139/g02-034.
[103]  Ng'uni, D.; Geleta, M.; Bryngelsson, T. Genetic diversity in sorghum (Sorghum bicolor (L.) Moench) accessions of Zambia as revealed by simple sequence repeats (SSR). Hereditas 2011, 148, 52–62, doi:10.1111/j.1601-5223.2011.02208.x.
[104]  Balfourier, F.; Roussel, V.; Strelchenko, P.; Exbrayat-Vinson, F.; Sourdille, P.; Boutet, G.; Koenig, J.; Ravel, C.; Mitrofanova, O.; Beckert, M.; Charmet, G. A worldwide bread wheat core collection arrayed in a 384-well plate. Theor. Appl. Genet. 2007, 114, 1265–1275, doi:10.1007/s00122-007-0517-1.
[105]  Ashfaq, M.; Khan, A.S. Genetic diversity in basmati rice (Oryza sativa L.) germplasm as revealed by microsatellite (SSR) markers. Genetika 2012, 48, 62–71.
[106]  Zhang, P.; Li, J.; Li, X.; Liu, X.; Zhao, X.; Lu, Y. Population structure and genetic diversity in a rice core collection (Oryza sativa L.) investigated with SSR markers. PLoS One 2011, 6, e27565.
[107]  Hao, C.; Wang, L.; Ge, H.; Dong, Y.; Zhang, X. Genetic diversity and linkage disequilibrium in Chinese bread wheat (Triticum aestivum L.) revealed by SSR markers. PLoS One 2011, 6, e17279.
[108]  Achtar, S.; Moualla, M.Y.; Kalhout, A.; R?der, M.S.; MirAli, N. Assessment of genetic diversity among Syrian durum (Triticum turgidum ssp. durum) and bread wheat (Triticum aestivum L.) using SSR markers. Genetika 2010, 46, 1500–1506.
[109]  Roussel, V.; Leisova, L.; Exbrayat, F.; Stehno, Z.; Balfourier, F. SSR allelic diversity changes in 480 European bread wheat varieties released from 1840 to 2000. Theor. Appl. Genet. 2005, 111, 162–170, doi:10.1007/s00122-005-2014-8.
[110]  Wang, H.; Wang, X.; Chen, P.; Liu, D. Assessment of genetic diversity of Yunnan, Tibetan, and Xinjiang wheat using SSR markers. J. Genet. Genomics 2007, 34, 623–633, doi:10.1016/S1673-8527(07)60071-X.
[111]  Yao, Q.; Yang, K.; Pan, G.; Rong, T. Genetic diversity of maize (Zea mays L.) landraces from southwest China based on SSR data. J. Genet. Genomics 2007, 34, 851–859, doi:10.1016/S1673-8527(07)60096-4.
[112]  Singh, R.K.; Bhatia, V.S.; Bhat, K.V.; Mohapatra, T.; Singh, N.K.; Bansal, K.C.; Koundal, K.R. SSR and AFLP based genetic diversity of soybean germplasm differing in photoperiod sensitivity. Genet. Mol. Biol. 2010, 33, 319–324.
[113]  Hu, X.; Wang, J.; Lu, P.; Zhang, H. Assessment of genetic diversity in broomcorn millet (Panicum miliaceum L.) using SSR markers. J. Genet. Genomics 2009, 36, 491–500, doi:10.1016/S1673-8527(08)60139-3.
[114]  Zeid, M.; Belay, G.; Mulkey, S.; Poland, J.; Sorrells, M.E. QTL mapping for yield and lodging resistance in an enhanced SSR-based map for tef. Theor. Appl. Genet. 2011, 122, 77–93, doi:10.1007/s00122-010-1424-4.
[115]  Apotikar, D.B.; Venkateswarlu, D.; Ghorade, R.B.; Wadaskar, R.M.; Patil, J.V.; Kulwal, P.L. Mapping of shoot fly tolerance loci in sorghum using SSR markers. J. Genet. 2011, 90, 59–66, doi:10.1007/s12041-011-0046-1.
[116]  Fu, S.; Zhan, Y.; Zhi, H.; Gai, J.; Yu, D. Mapping of SMV resistance gene Rsc-7 by SSR markers in soybean. Genetica 2006, 128, 63–69, doi:10.1007/s10709-005-5535-9.
[117]  Liu, J.-C.; Chu, Q.; Cai, H.-G.; Mi, G.-H.; Chen, F.-J. SSR linkage map construction and QTL mapping for leaf area in maize. Yi Chuan 2010, 32, 625–631, doi:10.3724/SP.J.1005.2010.00625.
[118]  Ha, B.-K.; Robbins, R.T.; Han, F.; Hussey, R.S.; Soper, J.F.; Boerma, H.R. SSR mapping and confirmation of soybean QTL from PI 437654 conditioning resistance to reniform nematode. Crop Sci. 2007, 47, 1336.
[119]  Su, C.-C.; Zhai, H.-Q.; Wang, C.-M.; Sun, L.-H.; Wan, J.-M. SSR mapping of brown planthopper resistance gene Bph9 in kaharamana, an indica rice (Oryza sativa L.). Yi Chuan Xue Bao 2006, 33, 262–268.
[120]  Maccaferri, M.; Sanguineti, M.C.; Demontis, A.; El-Ahmed, A.; Garcia del Moral, L.; Maalouf, F.; Nachit, M.; Nserallah, N.; Ouabbou, H.; Rhouma, S.; et al. Association mapping in durum wheat grown across a broad range of water regimes. J. Exp. Bot. 2011, 62, 409–438, doi:10.1093/jxb/erq287.
[121]  Gupta, K.; Balyan, S.; Edwards, J.; Isaac, P.; Korzun, V.; R?der, M.; Gautier, M.F.; Joudrier, P.; Schlatter, R.; Dubcovsky, J.; et al. Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor. Appl. Genet. 2002, 105, 413–422, doi:10.1007/s00122-002-0865-9.
[122]  R?der, M.S.; Korzun, V.; Wendehake, K.; Plaschke, J.; Tixier, M.H.; Leroy, P.; Ganal, M.W. A microsatellite map of wheat. Genetics 1998, 149, 2007–2023.
[123]  Somers, D.J.; Isaac, P.; Edwards, K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 2004, 109, 1105–1114, doi:10.1007/s00122-004-1740-7.
[124]  Guyomarc'h, H.; Sourdille, P.; Charmet, G.; Edwards, J.; Bernard, M. Characterisation of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D-genome of bread wheat. Theor. Appl. Genet. 2002, 104, 1164–1172, doi:10.1007/s00122-001-0827-7.
[125]  Song, Q.J.; Fickus, E.W.; Cregan, P.B. Characterization of trinucleotide SSR motifs in wheat. Theor. Appl. Genet. 2002, 104, 286–293, doi:10.1007/s001220100698.
[126]  Song, Q.J.; Shi, J.R.; Singh, S.; Fickus, E.W.; Costa, J.M.; Lewis, J.; Gill, B.S.; Ward, R.; Cregan, P.B. Development and mapping of microsatellite (SSR) markers in wheat. Theor. Appl. Genet. 2005, 110, 550–560, doi:10.1007/s00122-004-1871-x.
[127]  Stephenson, P.; Bryan, G.; Kirby, J.; Collins, A.; Devos, K.; Busso, C.; Gale, M. Fifty new microsatellite loci for the wheat genetic map. Theor. Appl. Genet. 1998, 97, 946–949, doi:10.1007/s001220050975.
[128]  Yu, J.-K.; La Rota, M.; Kantety, R.V.; Sorrells, M.E. EST derived SSR markers for comparative mapping in wheat and rice. Mol. Genet. Genomics 2004, 271, 742–751.
[129]  Jia, X.; Zhang, Z.; Liu, Y.; Zhang, C.; Shi, Y.; Song, Y.; Wang, T.; Li, Y. Development and genetic mapping of SSR markers in foxtail millet (Setaria italica (L.) P. Beauv.). Theor. Appl. Genet. 2009, 118, 821–829, doi:10.1007/s00122-008-0942-9.
[130]  Lin, H.-S.; Chiang, C.-Y.; Chang, S.-B.; Kuoh, C.-S. Development of simple sequence repeats (SSR) markers in Setaria italica (Poaceae) and cross-amplification in related species. Int. J. Mol. Sci. 2011, 12, 7835–7845, doi:10.3390/ijms12117835.
[131]  Maccaferri, M.; Sanguineti, M.C.; Corneti, S.; Ortega, J.L.A.; Salem, M.B.; Bort, J.; DeAmbrogio, E.; del Moral, L.F.G.; Demontis, A.; El-Ahmed, A.; Maalouf, F.; et al. Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics 2008, 178, 489–511, doi:10.1534/genetics.107.077297.
[132]  Breseghello, F.; Sorrells, M.E. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 2006, 172, 1165–1177, doi:10.1534/genetics.105.044586.
[133]  Li, S.; Jia, J.; Wei, X.; Zhang, X.; Li, L.; Chen, H.; Fan, Y.; Sun, H.; Zhao, X.; Lei, T.; et al. A intervarietal genetic map and QTL analysis for yield traits in wheat. Mol Breeding 2007, 20, 167–178, doi:10.1007/s11032-007-9080-3.
[134]  Emebiri, L.C. EST-SSR markers derived from an elite barley cultivar (Hordeum vulgare L. “Morex”): Polymorphism and genetic marker potential. Genome 2013, 52, 665–676.
[135]  Dong, P.; Wei, Y.-M.; Chen, G.-Y.; Li, W.; Wang, J.-R.; Nevo, E.; Zheng, Y.-L. EST-SSR diversity correlated with ecological and genetic factors of wild emmer wheat in Israel. Hereditas 2009, 146, 1–10, doi:10.1111/j.1601-5223.2009.02098.x.
[136]  Wang, H.-Y.; Wei, Y.-M.; Yan, Z.-H.; Zheng, Y.-L. EST-SSR DNA polymorphism in durum wheat (Triticum durum L.) collections. J. Appl. Genet. 2007, 48, 35–42.
[137]  Mullan, D.J.; Platteter, A.; Teakle, N.L.; Appels, R.; Colmer, T.D.; Anderson, J.M.; Francki, M.G. EST-derived SSR markers from defined regions of the wheat genome to identify Lophopyrum elongatum specific loci. Genome 2005, 48, 811–822.
[138]  Duran, C.; Singhania, R.; Raman, H.; Batley, J.; Edwards, D. Predicting polymorphic EST-SSRs in silico. Mol. Ecol. Resour. 2013, 13, 538–545, doi:10.1111/1755-0998.12078.
[139]  Sim, S.-C.; Yu, J.-K.; Jo, Y.-K.; Sorrells, M.E.; Jung, G. Transferability of cereal EST-SSR markers to ryegrass. Genome 2009, 52, 431–437, doi:10.1139/G09-019.
[140]  Appleby, N.; Edwards, D.; Batley, J. New Technologies for Ultra-high Throughput Genotyping in Plants. In Plant Genomics; Gustafson, J.P., Langridge, P., Somers, D.J., Eds.; Humana press: New York, NY, USA, 2009; Volume 513, pp. 19–39.
[141]  Edwards, D.; Forster, J.W.; Cogan, N.O.I.; Batley, J.; Chagné, D. Single Nucleotide Polymorphism Discovery. In Association Mapping in Plants; Oraguzie, N.C., Rikkerink, E.H.A., Gardiner, S.E., De Silva, D.H.N., Eds.; Springer: New York, NY, USA, 2007; pp. 53–76.
[142]  Batley, J.; Edwards, D. SNP Applications in Plants. In Association Mapping in Plants; Oraguzie, D.N.C., Rikkerink, D.E.H.A., Gardiner, D.S.E., De Silva, D.H.N., Eds.; Springer: New York, NY, USA, 2007; pp. 95–102.
[143]  Edwards, D.; Forster, J.W.; Chagné, D.; Batley, J. What are SNPs? In Association Mapping in Plants; Oraguzie, D.N.C., Rikkerink, D.E.H.A., Gardiner, D.S.E., De Silva, D.H.N., Eds.; Springer: New York, NY, USA, 2007; pp. 41–52.
[144]  Hao, Z.; Li, X.; Xie, C.; Weng, J.; Li, M.; Zhang, D.; Liang, X.; Liu, L.; Liu, S.; Zhang, S. Identification of functional genetic variations underlying drought tolerance in maize using SNP markers. J. Integr. Plant. Biol. 2011, 53, 641–652, doi:10.1111/j.1744-7909.2011.01051.x.
[145]  Bowers, J.E.; Chapman, B.A.; Rong, J.; Paterson, A.H. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 2003, 422, 433–438, doi:10.1038/nature01521.
[146]  Simillion, C.; Vandepoele, K.; Van Montagu, M.C.E.; Zabeau, M.; Van de Peer, Y. The hidden duplication past of Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 13627–13632.
[147]  Vandepoele, K.; Simillion, C.; Van de Peer, Y. Evidence that rice and other cereals are ancient aneuploids. Plant Cell 2003, 15, 2192–2202, doi:10.1105/tpc.014019.
[148]  Gore, M.A.; Chia, J.-M.; Elshire, R.J.; Sun, Q.; Ersoz, E.S.; Hurwitz, B.L.; Peiffer, J.A.; McMullen, M.D.; Grills, G.S.; Ross-Ibarra, J.; et al. A first-generation haplotype map of maize. Science 2009, 326, 1115–1117, doi:10.1126/science.1177837.
[149]  Barker, G.; Batley, J.; O' Sullivan, H.; Edwards, K.J.; Edwards, D. Redundancy based detection of sequence polymorphisms in expressed sequence tag data using autoSNP. Bioinformatics 2003, 19, 421–422, doi:10.1093/bioinformatics/btf881.
[150]  Coulondre, C.; Miller, J.H.; Farabaugh, P.J.; Gilbert, W. Molecular basis of base substitution hotspots in Escherichia coli. Nature 1978, 274, 775–780.
[151]  Ossowski, S.; Schneeberger, K.; Lucas-Lledó, J.I.; Warthmann, N.; Clark, R.M.; Shaw, R.G.; Weigel, D.; Lynch, M. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 2010, 327, 92–94.
[152]  Berkman, P.J.; Lai, K.; Lorenc, M.T.; Edwards, D. Next-generation sequencing applications for wheat crop improvement. Am. J. Bot. 2012, 99, 365–371, doi:10.3732/ajb.1100309.
[153]  Lai, K.; Lorenc, M.T.; Edwards, D. Genomic databases for crop improvement. Agronomy 2012, 2, 62–73, doi:10.3390/agronomy2010062.
[154]  Lorenc, M.T.; Hayashi, S.; Stiller, J.; Lee, H.; Manoli, S.; Ruperao, P.; Visendi, P.; Berkman, P.J.; Lai, K.; Batley, J.; et al. Discovery of single nucleotide polymorphisms in complex genomes using SGSautoSNP. Biology 2012, 1, 370–382, doi:10.3390/biology1020370.
[155]  Lai, K.; Berkman, P.J.; Lorenc, M.T.; Duran, C.; Smits, L.; Manoli, S.; Stiller, J.; Edwards, D. WheatGenome.info: An integrated database and portal for wheat genome information. Plant Cell Physiol. 2012, 53, e2, doi:10.1093/pcp/pcr141.
[156]  Allen, A.M.; Barker, G.L.A.; Berry, S.T.; Coghill, J.A.; Gwilliam, R.; Kirby, S.; Robinson, P.; Brenchley, R.C.; D'Amore, R.; McKenzie, N.; Waite, D.; et al. Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotechnol. J. 2011, 9, 1086–1099.
[157]  Huang, X.; Wei, X.; Sang, T.; Zhao, Q.; Feng, Q.; Zhao, Y.; Li, C.; Zhu, C.; Lu, T.; Zhang, Z.; et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat. Genet. 2010, 42, 961–967, doi:10.1038/ng.695.
[158]  Lai, J.; Li, R.; Xu, X.; Jin, W.; Xu, M.; Zhao, H.; Xiang, Z.; Song, W.; Ying, K.; Zhang, M.; et al. Genome-wide patterns of genetic variation among elite maize inbred lines. Nat. Genet. 2010, 42, 1027–1030, doi:10.1038/ng.684.
[159]  Lee, H.C.; Lai, K.; Lorenc, M.T.; Imelfort, M.; Duran, C.; Edwards, D. Bioinformatics tools and databases for analysis of next-generation sequence data. Brief. Funct. Genomics 2012, 11, 12–24, doi:10.1093/bfgp/elr037.
[160]  Duran, C.; Eales, D.; Marshall, D.; Imelfort, M.; Stiller, J.; Berkman, P.J.; Clark, T.; McKenzie, M.; Appleby, N.; Batley, J.; et al. Future tools for association mapping in crop plants. Genome 2010, 53, 1017–1023, doi:10.1139/G10-057.
[161]  Marshall, D.J.; Hayward, A.; Eales, D.; Imelfort, M.; Stiller, J.; Berkman, P.J.; Clark, T.; McKenzie, M.; Lai, K.; Duran, C.; et al. Targeted identification of genomic regions using TAGdb. Plant Methods 2010, 6, 19, doi:10.1186/1746-4811-6-19.
[162]  Imelfort, M.; Duran, C.; Batley, J.; Edwards, D. Discovering genetic polymorphisms in next-generation sequencing data. Plant Biotechnol. J. 2009, 7, 312–317, doi:10.1111/j.1467-7652.2009.00406.x.
[163]  Duran, C.; Appleby, N.; Edwards, D.; Batley, J. Molecular genetic markers: discovery, applications, data storage and visualisation. Current Bioinformatics 2009, 4, 16–27, doi:10.2174/157489309787158198.
[164]  Lai, K.; Duran, C.; Berkman, P.J.; Lorenc, M.T.; Stiller, J.; Manoli, S.; Hayden, M.J.; Forrest, K.L.; Fleury, D.; Baumann, U.; et al. Single nucleotide polymorphism discovery from wheat next-generation sequence data. Plant Biotechnol. J. 2012, 10, 743–749, doi:10.1111/j.1467-7652.2012.00718.x.
[165]  Duran, C.; Appleby, N.; Clark, T.; Wood, D.; Imelfort, M.; Batley, J.; Edwards, D. AutoSNPdb: an annotated single nucleotide polymorphism database for crop plants. Nucleic Acids Res. 2009, 37, D951–D953, doi:10.1093/nar/gkn650.
[166]  Duran, C.; Appleby, N.; Vardy, M.; Imelfort, M.; Edwards, D.; Batley, J. Single nucleotide polymorphism discovery in barley using autoSNPdb. Plant Biotechnol. J. 2009, 7, 326–333, doi:10.1111/j.1467-7652.2009.00407.x.
[167]  Batley, J.; Barker, G.; O'Sullivan, H.; Edwards, K.J.; Edwards, D. Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data. Plant Physiol. 2003, 132, 84–91, doi:10.1104/pp.102.019422.
[168]  Bundock, P.C.; Eliott, F.G.; Ablett, G.; Benson, A.D.; Casu, R.E.; Aitken, K.S.; Henry, R.J. Targeted single nucleotide polymorphism (SNP) discovery in a highly polyploid plant species using 454 sequencing. Plant Biotechnol. J. 2009, 7, 347–354, doi:10.1111/j.1467-7652.2009.00401.x.
[169]  You, F.M.; Huo, N.; Deal, K.R.; Gu, Y.Q.; Luo, M.-C.; McGuire, P.E.; Dvorak, J.; Anderson, O.D. Annotation-based genome-wide SNP discovery in the large and complex Aegilops tauschii genome using next-generation sequencing without a reference genome sequence. BMC Genomics 2011, 12, 59.
[170]  Close, T.J.; Bhat, P.R.; Lonardi, S.; Wu, Y.; Rostoks, N.; Ramsay, L.; Druka, A.; Stein, N.; Svensson, J.T.; Wanamaker, S.; et al. Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 2009, 10, 582, doi:10.1186/1471-2164-10-582.
[171]  Cavanagh, C.R.; Chao, S.; Wang, S.; Huang, B.E.; Stephen, S.; Kiani, S.; Forrest, K.; Saintenac, C.; Brown-Guedira, G.L.; Akhunova, A.; et al. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 8057–8062, doi:10.1073/pnas.1217133110.
[172]  Ganal, M.W.; Durstewitz, G.; Polley, A.; Bérard, A.; Buckler, E.S.; Charcosset, A.; Clarke, J.D.; Graner, E.-M.; Hansen, M.; Joets, J.; et al. A large maize (Zea mays L.) SNP genotyping array: Development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS One 2011, 6, e28334, doi:10.1371/journal.pone.0028334.
[173]  Seeb, J.E.; Carvalho, G.; Hauser, L.; Naish, K.; Roberts, S.; Seeb, L.W. Single-nucleotide polymorphism (SNP) discovery and applications of SNP genotyping in nonmodel organisms. Mol Ecol Resour 2011, 11, 1–8.
[174]  Xu, X.; Liu, X.; Ge, S.; Jensen, J.D.; Hu, F.; Li, X.; Dong, Y.; Gutenkunst, R.N.; Fang, L.; Huang, L.; et al. Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat. Biotechnol 2012, 30, 105–111.
[175]  Jin, J.; Huang, W.; Gao, J.-P.; Yang, J.; Shi, M.; Zhu, M.-Z.; Luo, D.; Lin, H.-X. Genetic control of rice plant architecture under domestication. Nat. Genet. 2008, 40, 1365–1369, doi:10.1038/ng.247.
[176]  Tan, L.; Li, X.; Liu, F.; Sun, X.; Li, C.; Zhu, Z.; Fu, Y.; Cai, H.; Wang, X.; Xie, D.; et al. Control of a key transition from prostrate to erect growth in rice domestication. Nat. Genet. 2008, 40, 1360–1364, doi:10.1038/ng.197.
[177]  Li, C.; Zhou, A.; Sang, T. Rice domestication by reducing shattering. Science 2006, 311, 1936–1939, doi:10.1126/science.1123604.
[178]  Huang, X.; Feng, Q.; Qian, Q.; Zhao, Q.; Wang, L.; Wang, A.; Guan, J.; Fan, D.; Weng, Q.; Huang, T.; et al. High-throughput genotyping by whole-genome resequencing. Genome Res. 2009, 19, 1068–1076, doi:10.1101/gr.089516.108.
[179]  Yu, H.; Xie, W.; Wang, J.; Xing, Y.; Xu, C.; Li, X.; Xiao, J. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS One 2011, 6, e17595.
[180]  Xie, W.; Feng, Q.; Yu, H.; Huang, X.; Zhao, Q.; Xing, Y.; Yu, S.; Han, B.; Zhang, Q. Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 10578–10583.
[181]  van Poecke, R.M.P.; Maccaferri, M.; Tang, J.; Truong, H.T.; Janssen, A.; van Orsouw, N.J.; Salvi, S.; Sanguineti, M.C.; Tuberosa, R.; van der Vossen, E.A.G. Sequence-based SNP genotyping in durum wheat. Plant Biotechnol. J. 2013, 11, 809–817, doi:10.1111/pbi.12072.
[182]  Hollister, J.D.; Arnold, B.J.; Svedin, E.; Xue, K.S.; Dilkes, B.P.; Bomblies, K. Genetic adaptation associated with genome-doubling in autotetraploid Arabidopsis arenosa. PLoS Genet. 2012, 8, e1003093, doi:10.1371/journal.pgen.1003093.
[183]  Mammadov, J.A.; Chen, W.; Ren, R.; Pai, R.; Marchione, W.; Yal?in, F.; Witsenboer, H.; Greene, T.W.; Thompson, S.A.; Kumpatla, S.P. Development of highly polymorphic SNP markers from the complexity reduced portion of maize (Zea mays L.) genome for use in marker-assisted breeding. Theor. Appl. Genet. 2010, 121, 577–588, doi:10.1007/s00122-010-1331-8.
[184]  van Orsouw, N.J.; Hogers, R.C.J.; Janssen, A.; Yal?in, F.; Snoeijers, S.; Verstege, E.; Schneiders, H.; van der Poel, H.; van Oeveren, J.; Verstegen, H.; et al. Complexity reduction of polymorphic sequences (CRoPS): A novel approach for large-scale polymorphism discovery in complex genomes. PLoS One 2007, 2, e1172, doi:10.1371/journal.pone.0001172.
[185]  Trebbi, D.; Maccaferri, M.; de Heer, P.; S?rensen, A.; Giuliani, S.; Salvi, S.; Sanguineti, M.C.; Massi, A.; van der Vossen, E.A.G.; Tuberosa, R. High-throughput SNP discovery and genotyping in durum wheat (Triticum durum Desf.). Theor. Appl. Genet. 2011, 123, 555–569, doi:10.1007/s00122-011-1607-7.
[186]  Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 2011, 6, e19379.
[187]  Chutimanitsakun, Y.; Nipper, R.W.; Cuesta-Marcos, A.; Cistué, L.; Corey, A.; Filichkina, T.; Johnson, E.A.; Hayes, P.M. Construction and application for QTL analysis of a restriction site associated DNA (RAD) linkage map in barley. BMC Genomics 2011, 12, 4.
[188]  Batley, J.; Edwards, D. Genome sequence data: management, storage, and visualization. BioTechniques 2009, 46, 333–336, doi:10.2144/000113134.
[189]  Edwards, D.; Batley, J. Plant bioinformatics: from genome to phenome. Trends in Biotechniques 2004, 22, 232–237, doi:10.1016/j.tibtech.2004.03.002.
[190]  Tetz, V.V. The pangenome concept: a unifying view of genetic information. Med. Sci. Monit. 2005, 11, HY24–HY29.
[191]  Yu, J.; Hu, S.; Wang, J.; Wong, G.K.-S.; Li, S.; Liu, B.; Deng, Y.; Dai, L.; Zhou, Y.; Zhang, X.; et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 2002, 296, 79–92, doi:10.1126/science.1068037.
[192]  Zhang, G.; Liu, X.; Quan, Z.; Cheng, S.; Xu, X.; Pan, S.; Xie, M.; Zeng, P.; Yue, Z.; Wang, W.; et al. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat. Biotechnol. 2012, 30, 549–554, doi:10.1038/nbt.2195.
[193]  Vielle-Calzada, J.-P.; Martínez de la Vega, O.; Hernández-Guzmán, G.; Ibarra-Laclette, E.; Alvarez-Mejía, C.; Vega-Arreguín, J.C.; Jiménez-Moraila, B.; Fernández-Cortés, A.; Corona-Armenta, G.; Herrera-Estrella, L.; et al. The Palomero genome suggests metal effects on domestication. Science 2009, 326, 1078–1078, doi:10.1126/science.1178437.
[194]  International Barley Genome Sequencing Consortium; Mayer, K.F.X.; Waugh, R.; Brown, J.W.S.; Schulman, A.; Langridge, P.; Platzer, M.; Fincher, G.B.; Muehlbauer, G.J.; Sato, K.; et al. A physical, genetic and functional sequence assembly of the barley genome. Nature 2012, 491, 711–716.
[195]  Jia, J.; Zhao, S.; Kong, X.; Li, Y.; Zhao, G.; He, W.; Appels, R.; Pfeifer, M.; Tao, Y.; Zhang, X.; et al. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 2013, 496, 91–95, doi:10.1038/nature12028.
[196]  Ling, H.-Q.; Zhao, S.; Liu, D.; Wang, J.; Sun, H.; Zhang, C.; Fan, H.; Li, D.; Dong, L.; Tao, Y.; et al. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 2013, 496, 87–90, doi:10.1038/nature11997.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133