The genome of an organism is under constant attack from endogenous and exogenous DNA damaging factors, such as reactive radicals, radiation, and genotoxins. Therefore, DNA damage response systems to sense DNA damage, arrest cell cycle, repair DNA lesions, and/or induce programmed cell death are crucial for maintenance of genomic integrity and survival of the organism. Genome sequences revealed that, although plants possess many of the DNA damage response factors that are present in the animal systems, they are missing some of the important regulators, such as the p53 tumor suppressor. These observations suggest differences in the DNA damage response mechanisms between plants and animals. In this review the DNA damage responses in plants and animals are compared and contrasted. In addition, the function of SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1), a plant-specific transcription factor that governs the robust response to DNA damage, is discussed.
References
[1]
Ciccia, A.; Elledge, S.J. The DNA damage response: Making it safe to play with knives. Mol. Cell 2010, 40, 179–204, doi:10.1016/j.molcel.2010.09.019.
[2]
Triantaphylides, C.; Havaux, M. Singlet oxygen in plants: Production, detoxification and signaling. Trends Plant Sci. 2009, 14, 219–228, doi:10.1016/j.tplants.2009.01.008.
[3]
Krieger-Liszkay, A. Singlet oxygen production in photosynthesis. J. Exp. Bot. 2005, 56, 337–346, doi:10.1093/jxb/erh237.
[4]
Asada, K. The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 601–639, doi:10.1146/annurev.arplant.50.1.601.
[5]
Beck, C.B. An Introduction to Plant Structure and Development, 2nd ed. ed.; Cambridge University Press: Cambridge, UK, 2010.
[6]
Mannuss, A.; Trapp, O.; Puchta, H. Gene regulation in response to DNA damage. Biochim. Biophys. Acta 2012, 1819, 154–165, doi:10.1016/j.bbagrm.2011.08.003.
[7]
Sirbu, B.M.; Cortez, D. DNA damage response: Three levels of DNA repair regulation. Cold Spring Harb. Perspect. Biol. 2013, 5, doi:10.1101/cshperspect.a012724.
[8]
Cimprich, K.A.; Cortez, D. Atr: An essential regulator of genome integrity. Nat. Rev. Mol. Cell Biol. 2008, 9, 616–627, doi:10.1038/nrm2450.
[9]
Sancar, A.; Lindsey-Boltz, L.A.; Unsal-Kacmaz, K.; Linn, S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 2004, 73, 39–85, doi:10.1146/annurev.biochem.73.011303.073723.
[10]
Rupnik, A.; Lowndes, N.F.; Grenon, M. Mrn and the race to the break. Chromosoma 2010, 119, 115–135, doi:10.1007/s00412-009-0242-4.
Zou, L.; Elledge, S.J. Sensing DNA damage through atrip recognition of RPA-ssDNA complexes. Science 2003, 300, 1542–1548, doi:10.1126/science.1083430.
[13]
Bermudez, V.P.; Lindsey-Boltz, L.A.; Cesare, A.J.; Maniwa, Y.; Griffith, J.D.; Hurwitz, J.; Sancar, A. Loading of the human 9-1-1 checkpoint complex onto DNA by the checkpoint clamp loader hrad17-replication factor c complex in vitro. Proc. Natl. Acad. Sci. USA 2003, 100, 1633–1638, doi:10.1073/pnas.0437927100.
[14]
Griffith, J.D.; Lindsey-Boltz, L.A.; Sancar, A. Structures of the human rad17-replication factor c and checkpoint rad 9-1-1 complexes visualized by glycerol spray/low voltage microscopy. J. Biol. Chem. 2002, 277, 15233–15236, doi:10.1074/jbc.C200129200.
Hartung, H.P.F. Isolation of the complete cDNA of the Mre11 homolog of Arabidopsis (accession no. Aj243822) indicates conservation of DNA recombination mechanisms between plants and other eucaryotes. Plant Physiol. 1999, 121, 312.
[17]
Gallego, M.E.; White, C.I. Rad50 function is essential for telomere maintenance in arabidopsis. Proc. Natl. Acad. Sci. USA 2001, 98, 1711–1716, doi:10.1073/pnas.98.4.1711.
[18]
Akutsu, N.; Iijima, K.; Hinata, T.; Tauchi, H. Characterization of the plant homolog of nijmegen breakage syndrome 1: Involvement in DNA repair and recombination. Biochem. Biophys. Res. Commun. 2007, 353, 394–398, doi:10.1016/j.bbrc.2006.12.030.
[19]
Amiard, S.; Charbonnel, C.; Allain, E.; Depeiges, A.; White, C.I.; Gallego, M.E. Distinct roles of the atr kinase and the mre11-rad50-nbs1 complex in the maintenance of chromosomal stability in arabidopsis. Plant Cell 2010, 22, 3020–3033.
[20]
Takashi, Y.; Kobayashi, Y.; Tanaka, K.; Tamura, K. Arabidopsis replication protein a 70a is required for DNA damage response and telomere length homeostasis. Plant Cell Physiol. 2009, 50, 1965–1976, doi:10.1093/pcp/pcp140.
[21]
Heitzeberg, F.; Chen, I.P.; Hartung, F.; Orel, N.; Angelis, K.J.; Puchta, H. The rad17 homologue of arabidopsis is involved in the regulation of DNA damage repair and homologous recombination. Plant J. Cell Mol. Biol. 2004, 38, 954–968, doi:10.1111/j.1365-313X.2004.02097.x.
[22]
Bakkenist, C.J.; Kastan, M.B. DNA damage activates atm through intermolecular autophosphorylation and dimer dissociation. Nature 2003, 421, 499–506, doi:10.1038/nature01368.
[23]
Warmerdam, D.O.; Kanaar, R.; Smits, V.A. Differential dynamics of atr-mediated checkpoint regulators. J. Nucleic Acids 2010, 2010, 319142:1–319142:6.
[24]
Ball, H.L.; Cortez, D. Atrip oligomerization is required for atr-dependent checkpoint signaling. J. Biol. Chem. 2005, 280, 31390–31396, doi:10.1074/jbc.M504961200.
[25]
Kastan, M.B.; Lim, D.S. The many substrates and functions of atm. Nat. Rev. Mol. Cell Biol. 2000, 1, 179–186, doi:10.1038/35043058.
[26]
Brown, E.J.; Baltimore, D. Atr disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev. 2000, 14, 397–402.
[27]
Xu, Y.; Ashley, T.; Brainerd, E.E.; Bronson, R.T.; Meyn, M.S.; Baltimore, D. Targeted disruption of atm leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev. 1996, 10, 2411–2422, doi:10.1101/gad.10.19.2411.
Chen, Y.; Sanchez, Y. Chk1 in the DNA damage response: Conserved roles from yeasts to mammals. DNA Repair 2004, 3, 1025–1032, doi:10.1016/j.dnarep.2004.03.003.
[30]
Ahn, J.Y.; Schwarz, J.K.; Piwnica-Worms, H.; Canman, C.E. Threonine 68 phosphorylation by ataxia telangiectasia mutated is required for efficient activation of chk2 in response to ionizing radiation. Cancer Res. 2000, 60, 5934–5936.
[31]
Matsuoka, S.; Rotman, G.; Ogawa, A.; Shiloh, Y.; Tamai, K.; Elledge, S.J. Ataxia telangiectasia-mutated phosphorylates chk2 in vivo and in vitro. Proc. Natl. Acad. Sci. USA 2000, 97, 10389–10394.
[32]
Gatei, M.; Sloper, K.; Sorensen, C.; Syljuasen, R.; Falck, J.; Hobson, K.; Savage, K.; Lukas, J.; Zhou, B.B.; Bartek, J.; et al. Ataxia-telangiectasia-mutated (atm) and nbs1-dependent phosphorylation of chk1 on ser-317 in response to ionizing radiation. J. Biol. Chem. 2003, 278, 14806–14811, doi:10.1074/jbc.M210862200.
[33]
Liu, Q.; Guntuku, S.; Cui, X.S.; Matsuoka, S.; Cortez, D.; Tamai, K.; Luo, G.; Carattini-Rivera, S.; DeMayo, F.; Bradley, A.; et al. Chk1 is an essential kinase that is regulated by atr and required for the g(2)/m DNA damage checkpoint. Genes Dev. 2000, 14, 1448–1459.
[34]
Zhao, H.; Piwnica-Worms, H. Atr-mediated checkpoint pathways regulate phosphorylation and activation of human chk1. Mol. Cell. Biol. 2001, 21, 4129–4139, doi:10.1128/MCB.21.13.4129-4139.2001.
[35]
Kim, M.A.; Kim, H.J.; Brown, A.L.; Lee, M.Y.; Bae, Y.S.; Park, J.I.; Kwak, J.Y.; Chung, J.H.; Yun, J. Identification of novel substrates for human checkpoint kinase chk1 and chk2 through genome-wide screening using a consensus chk phosphorylation motif. Exp. Mol. Med. 2007, 39, 205–212, doi:10.1038/emm.2007.23.
[36]
Garcia, V.; Bruchet, H.; Camescasse, D.; Granier, F.; Bouchez, D.; Tissier, A. Atatm is essential for meiosis and the somatic response to DNA damage in plants. Plant Cell 2003, 15, 119–132, doi:10.1105/tpc.006577.
[37]
Culligan, K.; Tissier, A.; Britt, A. Atr regulates a g2-phase cell-cycle checkpoint in arabidopsis thaliana. Plant Cell 2004, 16, 1091–1104, doi:10.1105/tpc.018903.
[38]
Culligan, K.M.; Robertson, C.E.; Foreman, J.; Doerner, P.; Britt, A.B. Atr and atm play both distinct and additive roles in response to ionizing radiation. Plant J. Cell Mol. Biol. 2006, 48, 947–961, doi:10.1111/j.1365-313X.2006.02931.x.
[39]
Elkon, R.; Rashi-Elkeles, S.; Lerenthal, Y.; Linhart, C.; Tenne, T.; Amariglio, N.; Rechavi, G.; Shamir, R.; Shiloh, Y. Dissection of a DNA-damage-induced transcriptional network using a combination of microarrays, rna interference and computational promoter analysis. Genome Biol. 2005, 6, R43, doi:10.1186/gb-2005-6-5-r43.
Sweeney, P.R.; Britt, A.B.; Culligan, K.M. The arabidopsis atrip ortholog is required for a programmed response to replication inhibitors. Plant J. Cell Mol. Biol. 2009, 60, 518–526, doi:10.1111/j.1365-313X.2009.03975.x.
[42]
Sakamoto, A.N.; Lan, V.T.; Puripunyavanich, V.; Hase, Y.; Yokota, Y.; Shikazono, N.; Nakagawa, M.; Narumi, I.; Tanaka, A. A uvb-hypersensitive mutant in arabidopsis thaliana is defective in the DNA damage response. Plant J. Cell Mol. Biol. 2009, 60, 509–517, doi:10.1111/j.1365-313X.2009.03974.x.
[43]
Inze, D.; de Veylder, L. Cell cycle regulation in plant development. Annu. Rev. Genet. 2006, 40, 77–105, doi:10.1146/annurev.genet.40.110405.090431.
[44]
Lafarge, S. Characterization of arabidopsis thaliana ortholog of the human breast cancer susceptibility gene 1: Atbrca1, strongly induced by gamma rays. Nucleic Acids Res. 2003, 31, 1148–1155, doi:10.1093/nar/gkg202.
[45]
Stracker, T.H.; Usui, T.; Petrini, J.H. Taking the time to make important decisions: The checkpoint effector kinases chk1 and chk2 and the DNA damage response. DNA Repair 2009, 8, 1047–1054, doi:10.1016/j.dnarep.2009.04.012.
[46]
Stewart, G.S.; Wang, B.; Bignell, C.R.; Taylor, A.M.; Elledge, S.J. Mdc1 is a mediator of the mammalian DNA damage checkpoint. Nature 2003, 421, 961–966, doi:10.1038/nature01446.
[47]
Stucki, M.; Jackson, S.P. Mdc1/nfbd1: A key regulator of the DNA damage response in higher eukaryotes. DNA Repair 2004, 3, 953–957, doi:10.1016/j.dnarep.2004.03.007.
[48]
Garcia, V.; Furuya, K.; Carr, A.M. Identification and functional analysis of topbp1 and its homologs. DNA Repair 2005, 4, 1227–1239, doi:10.1016/j.dnarep.2005.04.001.
[49]
Kumagai, A.; Kim, S.M.; Dunphy, W.G. Claspin and the activated form of atr-atrip collaborate in the activation of chk1. J. Biol. Chem. 2004, 279, 49599–49608, doi:10.1074/jbc.M408353200.
[50]
Manke, I.A.; Lowery, D.M.; Nguyen, A.; Yaffe, M.B. Brct repeats as phosphopeptide-binding modules involved in protein targeting. Science 2003, 302, 636–639, doi:10.1126/science.1088877.
[51]
Yu, X.; Chini, C.C.; He, M.; Mer, G.; Chen, J. The brct domain is a phospho-protein binding domain. Science 2003, 302, 639–642, doi:10.1126/science.1088753.
[52]
Chini, C.C.; Chen, J. Human claspin is required for replication checkpoint control. J. Biol. Chem. 2003, 278, 30057–30062, doi:10.1074/jbc.M301136200.
[53]
Kumagai, A.; Dunphy, W.G. Claspin, a novel protein required for the activation of chk1 during a DNA replication checkpoint response in xenopus egg extracts. Mol. Cell 2000, 6, 839–849, doi:10.1016/S1097-2765(05)00092-4.
[54]
Rogakou, E.P.; Pilch, D.R.; Orr, A.H.; Ivanova, V.S.; Bonner, W.M. DNA double-stranded breaks induce histone h2ax phosphorylation on serine 139. J. Biol. Chem. 1998, 273, 5858–5868.
[55]
Lukas, C.; Melander, F.; Stucki, M.; Falck, J.; Bekker-Jensen, S.; Goldberg, M.; Lerenthal, Y.; Jackson, S.P.; Bartek, J.; Lukas, J. Mdc1 couples DNA double-strand break recognition by nbs1 with its h2ax-dependent chromatin retention. EMBO J. 2004, 23, 2674–2683, doi:10.1038/sj.emboj.7600269.
[56]
Celeste, A.; Fernandez-Capetillo, O.; Kruhlak, M.J.; Pilch, D.R.; Staudt, D.W.; Lee, A.; Bonner, R.F.; Bonner, W.M.; Nussenzweig, A. Histone h2ax phosphorylation is dispensable for the initial recognition of DNA breaks. Nat. Cell Biol. 2003, 5, 675–679, doi:10.1038/ncb1004.
[57]
Lou, Z.; Minter-Dykhouse, K.; Franco, S.; Gostissa, M.; Rivera, M.A.; Celeste, A.; Manis, J.P.; van Deursen, J.; Nussenzweig, A.; Paull, T.T.; et al. Mdc1 maintains genomic stability by participating in the amplification of atm-dependent DNA damage signals. Mol. Cell 2006, 21, 187–200, doi:10.1016/j.molcel.2005.11.025.
[58]
Aunoble, B.; Bernard-Gallon, D.; Bignon, Y.J. Regulation of brca1 and brca2 transcript in response to cisplatin, adriamycin, taxol and ionising radiation is correlated to p53 functional status in ovarian cancer cell lines. Oncol. Rep. 2001, 8, 663–668.
[59]
Trapp, O.; Seeliger, K.; Puchta, H. Homologs of breast cancer genes in plants. Front. Plant Sci. 2011, 2, 19.
[60]
Mathilde, G.; Ghislaine, G.; Daniel, V.; Georges, P. The arabidopsis mei1 gene encodes a protein with five brct domains that is involved in meiosis-specific DNA repair events independent of spo11-induced dsbs. Plant J. 2003, 35, 465–475, doi:10.1046/j.1365-313X.2003.01820.x.
[61]
Lavin, M.F.; Kozlov, S. Atm activation and DNA damage response. Cell Cycle 2007, 6, 931–942, doi:10.4161/cc.6.8.4180.
[62]
Helton, E.S.; Chen, X. P53 modulation of the DNA damage response. J. Cell. Biochem. 2007, 100, 883–896, doi:10.1002/jcb.21091.
[63]
Appella, E.; Anderson, C.W. Post-translational modifications and activation of p53 by genotoxic stresses. Eur. J. Biochem. FEBS 2001, 268, 2764–2772, doi:10.1046/j.1432-1327.2001.02225.x.
Taira, N.; Yoshida, K. Post-translational modifications of p53 tumor suppressor: Determinants of its functional targets. Histol. Histopathol. 2012, 27, 437–443.
[66]
Shieh, S.Y.; Ikeda, M.; Taya, Y.; Prives, C. DNA damage-induced phosphorylation of p53 alleviates inhibition by mdm2. Cell 1997, 91, 325–334, doi:10.1016/S0092-8674(00)80416-X.
[67]
Hoeberichts, F.A.; Woltering, E.J. Multiple mediators of plant programmed cell death: Interplay of conserved cell death mechanisms and plant-specific regulators. BioEssays News Rev. Mol. Cell. Dev. Biol. 2003, 25, 47–57, doi:10.1002/bies.10175.
[68]
Harrison, J.C.; Haber, J.E. Surviving the breakup: The DNA damage checkpoint. Annu. Rev. Genet. 2006, 40, 209–235, doi:10.1146/annurev.genet.40.051206.105231.
[69]
Harper, J.W.; Elledge, S.J. The DNA damage response: Ten years after. Mol. Cell 2007, 28, 739–745, doi:10.1016/j.molcel.2007.11.015.
[70]
Lazzaro, F.; Giannattasio, M.; Puddu, F.; Granata, M.; Pellicioli, A.; Plevani, P.; Muzi-Falconi, M. Checkpoint mechanisms at the intersection between DNA damage and repair. DNA Repair 2009, 8, 1055–1067, doi:10.1016/j.dnarep.2009.04.022.
[71]
Abbas, T.; Dutta, A. P21 in cancer: Intricate networks and multiple activities. Nat. Rev. Cancer 2009, 9, 400–414, doi:10.1038/nrc2657.
[72]
Sorensen, C.S.; Syljuasen, R.G. Safeguarding genome integrity: The checkpoint kinases atr, chk1 and wee1 restrain cdk activity during normal DNA replication. Nucleic Acids Res. 2012, 40, 477–486, doi:10.1093/nar/gkr697.
[73]
Reinhardt, H.C.; Schumacher, B. The p53 network: Cellular and systemic DNA damage responses in aging and cancer. Trends Genet. TIG 2012, 28, 128–136.
[74]
McGowan, C.H.; Russell, P. Cell cycle regulation of human wee1. EMBO J. 1995, 14, 2166–2175.
[75]
Heald, R.; McLoughlin, M.; McKeon, F. Human wee1 maintains mitotic timing by protecting the nucleus from cytoplasmically activated cdc2 kinase. Cell 1993, 74, 463–474, doi:10.1016/0092-8674(93)80048-J.
[76]
Boutros, R.; Dozier, C.; Ducommun, B. The when and wheres of cdc25 phosphatases. Curr. Opin. Cell Biol. 2006, 18, 185–191, doi:10.1016/j.ceb.2006.02.003.
[77]
Karlsson-Rosenthal, C.; Millar, J.B. Cdc25: Mechanisms of checkpoint inhibition and recovery. Trends Cell Biol. 2006, 16, 285–292, doi:10.1016/j.tcb.2006.04.002.
[78]
Yoshiyama, K.; Conklin, P.A.; Huefner, N.D.; Britt, A.B. Suppressor of gamma response 1 (sog1) encodes a putative transcription factor governing multiple responses to DNA damage. Proc. Natl. Acad. Sci. USA 2009, 106, 12843–12848.
[79]
Sorrell, D.A.; Marchbank, A.; McMahon, K.; Dickinson, J.R.; Rogers, H.J.; Francis, D. A wee1 homologue from arabidopsis thaliana. Planta 2002, 215, 518–522, doi:10.1007/s00425-002-0815-4.
[80]
De Schutter, K.; Joubes, J.; Cools, T.; Verkest, A.; Corellou, F.; Babiychuk, E.; van Der Schueren, E.; Beeckman, T.; Kushnir, S.; Inze, D.; et al. Arabidopsis wee1 kinase controls cell cycle arrest in response to activation of the DNA integrity checkpoint. Plant Cell 2007, 19, 211–225, doi:10.1105/tpc.106.045047.
[81]
Spadafora, N.D.; Doonan, J.H.; Herbert, R.J.; Bitonti, M.B.; Wallace, E.; Rogers, H.J.; Francis, D. Arabidopsis t-DNA insertional lines for cdc25 are hypersensitive to hydroxyurea but not to zeocin or salt stress. Ann. Bot. 2011, 107, 1183–1192, doi:10.1093/aob/mcq142.
[82]
Dissmeyer, N.; Weimer, A.K.; Pusch, S.; de Schutter, K.; Alvim Kamei, C.L.; Nowack, M.K.; Novak, B.; Duan, G.L.; Zhu, Y.G.; de Veylder, L.; et al. Control of cell proliferation, organ growth, and DNA damage response operate independently of dephosphorylation of the arabidopsis cdk1 homolog cdka;1. Plant Cell 2009, 21, 3641–3654, doi:10.1105/tpc.109.070417.
[83]
Friedberg, E.C.; Walker, G.C.; Siede, W.; Wood, R.D.; Schultz, R.A.; Ellenberger, T. DNA Repair and Mutagenesis, 2nd ed. ed.; American Society for Microbiology: Washington, DC, USA, 2005.
[84]
Hays, J.B. Arabidopsis thaliana, a versatile model system for study of eukaryotic genome-maintenance functions. DNA Repair 2002, 1, 579–600, doi:10.1016/S1568-7864(02)00093-9.
[85]
Kimura, S.; Sakaguchi, K. DNA repair in plants. Chem. Rev. 2006, 106, 753–766, doi:10.1021/cr040482n.
[86]
Jasin, M.; Moynahan, M.E.; Richardson, C. Targeted transgenesis. Proc. Natl. Acad. Sci. USA 1996, 93, 8804–8808, doi:10.1073/pnas.93.17.8804.
[87]
Lee, K.Y.; Lund, P.; Lowe, K.; Dunsmuir, P. Homologous recombination in plant cells after agrobacterium-mediated transformation. Plant Cell 1990, 2, 415–425.
[88]
Offringa, R.; de Groot, M.J.; Haagsman, H.J.; Does, M.P.; van den Elzen, P.J.; Hooykaas, P.J. Extrachromosomal homologous recombination and gene targeting in plant cells after agrobacterium mediated transformation. EMBO J. 1990, 9, 3077–3084.
[89]
Vousden, K.H.; Lu, X. Live or let die: The cell’s response to p53. Nat. Rev. Cancer 2002, 2, 594–604, doi:10.1038/nrc864.
[90]
Fulcher, N.; Sablowski, R. Hypersensitivity to DNA damage in plant stem cell niches. Proc. Natl. Acad. Sci. USA 2009, 106, 20984–20988, doi:10.1073/pnas.0909218106.
[91]
Rich, T.; Allen, R.L.; Wyllie, A.H. Defying death after DNA damage. Nature 2000, 407, 777–783, doi:10.1038/35037717.
[92]
Lacomme, C.; Santa Cruz, S. Bax-induced cell death in tobacco is similar to the hypersensitive response. Proc. Natl. Acad. Sci. USA 1999, 96, 7956–7961, doi:10.1073/pnas.96.14.7956.
Watanabe, N.; Lam, E. Arabidopsis bax inhibitor-1 functions as an attenuator of biotic and abiotic types of cell death. Plant J. Cell Mol. Biol. 2006, 45, 884–894, doi:10.1111/j.1365-313X.2006.02654.x.
[95]
Uren, A.G.; O’Rourke, K.; Aravind, L.A.; Pisabarro, M.T.; Seshagiri, S.; Koonin, E.V.; Dixit, V.M. Identification of paracaspases and metacaspases: Two ancient families of caspase-like proteins, one of which plays a key role in malt lymphoma. Mol. Cell 2000, 6, 961–967.
[96]
Lam, E.; Zhang, Y. Regulating the reapers: Activating metacaspases for programmed cell death. Trends Plant Sci. 2012, 17, 487–494, doi:10.1016/j.tplants.2012.05.003.
Fox, D.T.; Duronio, R.J. Endoreplication and polyploidy: Insights into development and disease. Development 2013, 140, 3–12, doi:10.1242/dev.080531.
[99]
Endo, M.; Ishikawa, Y.; Osakabe, K.; Nakayama, S.; Kaya, H.; Araki, T.; Shibahara, K.; Abe, K.; Ichikawa, H.; Valentine, L.; et al. Increased frequency of homologous recombination and t-DNA integration in arabidopsis caf-1 mutants. EMBO J. 2006, 25, 5579–5590, doi:10.1038/sj.emboj.7601434.
[100]
Ramirez-Parra, E.; Gutierrez, C. E2f regulates fasciata1, a chromatin assembly gene whose loss switches on the endocycle and activates gene expression by changing the epigenetic status. Plant Physiol. 2007, 144, 105–120, doi:10.1104/pp.106.094979.
[101]
Schonrock, N.; Exner, V.; Probst, A.; Gruissem, W.; Hennig, L. Functional genomic analysis of caf-1 mutants in arabidopsis thaliana. J. Biol. Chem. 2006, 281, 9560–9568.
[102]
Takahashi, N.; Lammens, T.; Boudolf, V.; Maes, S.; Yoshizumi, T.; de Jaeger, G.; Witters, E.; Inze, D.; de Veylder, L. The DNA replication checkpoint aids survival of plants deficient in the novel replisome factor etg1. EMBO J. 2008, 27, 1840–1851, doi:10.1038/emboj.2008.107.
[103]
Adachi, S.; Minamisawa, K.; Okushima, Y.; Inagaki, S.; Yoshiyama, K.; Kondou, Y.; Kaminuma, E.; Kawashima, M.; Toyoda, T.; Matsui, M.; et al. Programmed induction of endoreduplication by DNA double-strand breaks in arabidopsis. Proc. Natl. Acad. Sci. USA 2011, 108, 10004–10009, doi:10.1073/pnas.1103584108.
[104]
Sugimoto-Shirasu, K.; Roberts, K. “Big it up”: Endoreduplication and cell-size control in plants. Curr. Opin. Plant Biol. 2003, 6, 544–553, doi:10.1016/j.pbi.2003.09.009.
[105]
Hashimura, Y.; Ueguchi, C. The arabidopsis meristem disorganization 1 gene is required for the maintenance of stem cells through the reduction of DNA damage. Plant J. Cell Mol Biol. 2011, 68, 657–669, doi:10.1111/j.1365-313X.2011.04718.x.
[106]
Wenig, U.; Meyer, S.; Stadler, R.; Fischer, S.; Werner, D.; Lauter, A.; Melzer, M.; Hoth, S.; Weingartner, M.; Sauer, N. Identification of main, a factor involved in genome stability in the meristems of arabidopsis thaliana. Plant J. Cell Mol. Biol. 2013, 75, 469–483, doi:10.1111/tpj.12215.
[107]
Wei, W.; Ba, Z.; Gao, M.; Wu, Y.; Ma, Y.; Amiard, S.; White, C.I.; Rendtlew Danielsen, J.M.; Yang, Y.G.; Qi, Y. A role for small rnas in DNA double-strand break repair. Cell 2012, 149, 101–112, doi:10.1016/j.cell.2012.03.002.
[108]
Preuss, S.B.; Britt, A.B. A DNA-damage-induced cell cycle checkpoint in arabidopsis. Genetics 2003, 164, 323–334.
[109]
Yoshiyama, K.O.; Kobayashi, J.; Ogita, N.; Ueda, M.; Kimura, S.; Maki, H.; Umeda, M. Atm-mediated phosphorylation of sog1 is essential for the DNA damage response in arabidopsis. EMBO Rep. 2013, 14, 817–822, doi:10.1038/embor.2013.112.
[110]
Furukawa, T.; Curtis, M.J.; Tominey, C.M.; Duong, Y.H.; Wilcox, B.W.; Aggoune, D.; Hays, J.B.; Britt, A.B. A shared DNA-damage-response pathway for induction of stem-cell death by uvb and by gamma irradiation. DNA Repair 2010, 9, 940–948, doi:10.1016/j.dnarep.2010.06.006.
[111]
Rutkowski, R.; Hofmann, K.; Gartner, A. Phylogeny and function of the invertebrate p53 superfamily. Cold Spring Harb. Perspect. Biol. 2010, 2, a001131.
[112]
Rozan, L.M.; El-Deiry, W.S. P53 downstream target genes and tumor suppression: A classical view in evolution. Cell Death Differ. 2007, 14, 3–9, doi:10.1038/sj.cdd.4402058.
[113]
Elson, A.; Wang, Y.; Daugherty, C.J.; Morton, C.C.; Zhou, F.; Campos-Torres, J.; Leder, P. Pleiotropic defects in ataxia-telangiectasia protein-deficient mice. Proc. Natl. Acad. Sci. USA 1996, 93, 13084–13089.
[114]
Easton, D.F. Cancer risks in a-t heterozygotes. Int. J. Radiat. Biol. 1994, 66, S177–S182, doi:10.1080/09553009414552011.
[115]
Baer, R.; Ludwig, T. The brca1/bard1 heterodimer, a tumor suppressor complex with ubiquitin e3 ligase activity. Curr. Opin. Genet. Dev. 2002, 12, 86–91, doi:10.1016/S0959-437X(01)00269-6.
[116]
Miki, Y.; Swensen, J.; Shattuck-Eidens, D.; Futreal, P.A.; Harshman, K.; Tavtigian, S.; Liu, Q.; Cochran, C.; Bennett, L.M.; Ding, W.; et al. A strong candidate for the breast and ovarian cancer susceptibility gene brca1. Science 1994, 266, 66–71.
[117]
Reidt, W.; Wurz, R.; Wanieck, K.; Chu, H.H.; Puchta, H. A homologue of the breast cancer-associated gene bard1 is involved in DNA repair in plants. EMBO J. 2006, 25, 4326–4337, doi:10.1038/sj.emboj.7601313.
[118]
Doerner, P.; Jorgensen, J.E.; You, R.; Steppuhn, J.; Lamb, C. Control of root growth and development by cyclin expression. Nature 1996, 380, 520–523, doi:10.1038/380520a0.
[119]
Kruman, I. DNA Repair; InTech: Rijeka, Croatia, 2011.
[120]
Postel-Vinay, S.; Vanhecke, E.; Olaussen, K.A.; Lord, C.J.; Ashworth, A.; Soria, J.C. The potential of exploiting DNA-repair defects for optimizing lung cancer treatment. Nat. Rev. Clin. Oncol. 2012, 9, 144–155, doi:10.1038/nrclinonc.2012.3.
[121]
Britt, A.B. DNA damage and repair in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1996, 47, 75–100, doi:10.1146/annurev.arplant.47.1.75.
[122]
The Arabidopsis Information Resource. Available online: http://www.arabidopsis.org/ (accessed on 23 August 2013).